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Brain imaging in drug R&D

ALEX P. ZIJDENBOS1,2, JASON P. LERCH2, BARRY J. BEDELL2, &

ALAN C. EVANS1,2

1Neuralyse Inc., LaSalle, Canada, and 2McConnell Brain Imaging Centre,

Montreal Neurological Institute, McGill University, Montreal, Canada

Abstract
Magnetic resonance imaging (MRI), used as a clinical diagnostic tool since the early 1980s, is
rapidly gaining traction as an integral part of the drug development process. Brain imaging
research spans a wide area, covering both structure and function, and ranging from the physics
and physiology associated with novel acquisition techniques, to the development of sophisti-
cated image processing algorithms. This paper briefly describes two methods on either end of
this spectrum: the ‘‘pipeline’’ framework for the fully automated morphometric analysis of brain
imaging data, and molecular MRI, which holds promise for the non-invasive detection of
molecular targets of new pharmacological compounds. The potential use of these technologies
is illustrated by examples of their applications in multiple sclerosis, Alzheimer’s disease, and
oncology.

Keywords: Magnetic resonance imaging, MRI, quantification, clinical trial, image analysis,

morphometry

Introduction

The use of magnetic resonance imaging (MRI) continues to expand. Initially (starting

in the 1940s) used for spectroscopy, as an analytical method in the study of the

composition of chemical compounds, it rapidly gained popularity as a radiological

diagnostic tool throughout and following the 1980s. More recently, its use as a tool for

the quantitative assessment of structure (anatomical MRI, aMRI) and function

(functional MRI, fMRI) has rapidly been gaining momentum, especially above the

neck �/ i.e. for imaging of the human brain. In this respect, the landmark interferon-

beta-1b clinical trial (Paty et al. 1993), showing a clear correlation between MRI-

measured brain lesion load and clinical findings in multiple sclerosis, placed

neuroimaging firmly on the map of the drug development process.

This paper considers neuroimaging research within two broad categories: that

focused on the physics and physiology of signal formation and that focused on signal

analysis methodology. Two distinct areas will be highlighted: the characterization of

neuroanatomy and neuropathology using novel data analysis techniques relying on

‘‘standard’’ aMRI data acquisition sequences; and an illustration of mMRI (molecular

MRI), a novel data acquisition technique which allows for the in vivo characterization
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of biological processes at the cellular and molecular level. On opposite ends of the

imaging research spectrum, these methodologies are promising new tools for the drug

development process.

Quantification of brain morphology

The quantitative analysis of ‘‘standard’’ magnetic resonance imaging (MRI) data has

become increasingly important in both research and clinical studies aiming at human

brain development, function, and pathology. Traditionally, these measurements are

performed by human operators suffering from high intra- and interrater variabilities

which may obscure a small treatment effect. The development of sophisticated image

analysis techniques allows the extraction of a wide variety of ‘‘structural biomarkers’’

in an objective, reproducible and automated fashion. This includes the identification

and quantification of various pathologies and lesions, different tissue types, specific

brain structures, and cortical thickness measurements. We have developed a fully

automatic ‘‘pipeline’’ image analysis framework which is able to not only produce a

wide range of quantitative outputs on an individual’s MRI brain scan, but also process

large numbers of such data sets in an efficient and consistent fashion. This system has

been applied to a large number of applications, as early as in 1997 when it was used for

the fully automated quantification of multiple sclerosis lesion load for 2000 MRI brain

scans, in the context of a phase III clinical trial (Evans et al. 1997, Weiner 1997,

Zijdenbos et al. 2002).

Figure 1 shows a sample analysis pipeline, illustrating a number of processing steps

present in most processing pipelines designed for structural, quantitative image

analysis. The first stages of such pipelines are concerned with pre-processing and

artefact reduction; MRI data typically suffers from a number of artefacts that affect

the accuracy and reliability of automated image analysis, including different types of

spatial variations of the MR signal and imaging noise. Many of these can be corrected

or at least reduced using a variety of image processing algorithms (Zijdenbos et al.

2002).

Quality Control StorageData Conversion (MINC)

Data Collection

Inter-Slice Intensity Normalization Non-Uniformity Correction

Pre-processing

Intra-Scan Inter-Scan Stereotaxic Resampling

Registration

Noise ReductionBrain Masking Classification

Post-processing

Figure 1. An example analysis pipeline for the quantitative analysis of structural MRI data.

Brain imaging in drug R&D S59
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Another central component of most automated analyses is spatial normalization

(registration and resampling). The notion of a stereotaxic, brain-based coordinate

system is critical for the analysis of large neuroimaging databases. For this purpose we

rely on a coordinate space based on the atlas created by Talairach and Tournoux

(Talairach et al. 1988) for neurosurgical applications. Variations on this concept are

widely accepted in the brain mapping community to study functional activation (Evans

et al. 1992, Fox et al. 1985, Frackowiak 1997) and anatomical variability (Ashburner

et al. 1998, Mazziotta et al. 1995, Toga et al. 1996). This type of spatial normalization

provides multiple advantages. First, it removes global differences (brain size) between

subjects (Collins et al. 1994). Second, it provides a conceptual framework for the

completely automated, 3D analysis across subjects. Third, it allows longitudinal and

cross-site, cross-study, and cross-population analysis. Fourth, the Talairach space

enables the use of spatial priors for classification and allows the use of spatial masks for

postprocessing and anatomically driven hypothesis testing (Kamber et al. 1995, Riahi

et al. 1998). Finally, it provides a framework for statistical analysis of the results based

on established random field models (Worsley et al. 1992, 1996).

Tissue classification

The labelling of individual pixels or voxels with a particular tissue class is typically

referred to as (voxel) classification. Most commonly in brain imaging work, voxels are

labelled as belonging to one of the predominant tissue classes in the brain: white

matter, grey matter, or cerebrospinal fluid (CSF). We have developed INSECT

(Intensity Normalized Stereotaxic Environment for Classification of Tissues) which

generates tissue class maps using an artificial neural network classifier (Zijdenbos et al.

2002), see Figure 2. For applications in neuropathology, INSECT can also be used to

label voxels as belonging to areas affected by the pathology, e.g., white matter lesions

in multiple sclerosis, or tumour areas in oncology. More recently, we are relying on

accurate partial volume estimation in the classification process, which enhances the

accuracy of volume estimation and aids other computational techniques such as the

cortical thickness estimation method described below (Tohka et al. 2004).

Figure 2. T1-weighted MRI scan (left), the corresponding INSECT-based tissue classification (middle) and

the ANIMAL�/INSECT brain structure segmentation result (right).

S60 A. P. Zijdenbos et al.
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Anatomical segmentation

Anatomical segmentation �/ sometimes referred to as regional parcellation �/ is the

assignment of neuroanatomical structural membership labels to voxels. Segmentation

is a top-down process which frequently relies on higher-level knowledge of anatomy

(e.g., atlases). This is both conceptually and methodologically distinct from tissue

classification which is a data-driven, bottom-up process. ANIMAL (Automated Non-

linear Image Matching and Anatomical Labelling) is an automated algorithm to

perform this labelling in 3D (Collins et al. 1995). ANIMAL deforms one MRI volume

to match another, previously labelled, MRI volume. It builds up a 3D non-linear

deformation field in an iterative, multi-scale fashion. Anatomical labels are defined in

the new volume by mapping the original labels through the derived 3D deformation

field. It is possible to combine the top-down ANIMAL approach with the bottom-up

INSECT classification to obtain improved segmentation results (Collins et al. 1999),

see Figure 2.

Cortical thickness measurement

Rather than labelling individual voxels, it is possible to extract an explicit model of the

cortex of the brain. In order to accomplish this we have developed ASP, an iterative

method which yields 2D, tessellated mathematical models of the inner and outer

cortical surfaces (MacDonald et al. 2000). ASP generates simple (non-self-intersect-

ing) surfaces with spherical topologies using deformable models. Starting from the

tissue classification, the process first deforms an initial spherical model towards the

white/grey matter interface, using a combination of model- and image-based

constraints. The white matter surface is then taken as a starting point for the

expansion towards the pial surface. These two surfaces allow for the measurement of

cortical thickness in 3D throughout the brain (Lerch et al. 2005). As a final step

before statistical analysis the cortical thickness data are blurred using a surface based

diffusion smoothing kernel (Chung et al. 2002), see Figure 3.

Molecular MRI

Although quantitative aMRI is capable of providing a wealth of information regarding

normal and pathological processes, the structural changes seen on aMRI usually

manifest late in the disease process, often after irreversible damage has occurred.

Furthermore, aMRI is not capable of providing information regarding processes

occurring at the cellular or molecular level. This information is generally provided

from microscopic examination or molecular analysis of tissue. Although considered

gold-standard diagnostic techniques, the reliance on tissue has several serious

limitations, including its invasive nature and the inability to perform longitudinal

studies on a single subject or animal. As such, recent years have witnessed the

emergence of in vivo molecular imaging (Blankenberg 2003, Blasberg 2002, Cherry

2004, Heckl et al. 2004, Weissleder & Mahmood 2001). Although in vivo molecular

imaging has traditionally been the domain of positron emission tomography (PET)

and optical imaging, these techniques are limited by several factors including radiation

dose concerns, poor spatial resolution, high cost, and limited availability. Recent

attention, therefore, has turned to the use of MRI, which does not suffer such

limitations, as a molecular imaging modality. It is certainly beyond the scope of this

Brain imaging in drug R&D S61
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manuscript to review the burgeoning field of molecular MRI (mMRI), and we will

focus, rather, on our recent work in this exciting field.

The emergence of mMRI has been lagging primarily due to the low detectability of

conventional MRI contrast agents, which is generally several orders of magnitude

below the in vivo concentrations of molecular targets (Nunn et al. 1997). We have

overcome this obstacle by developing novel probes which do not rely on a single

paramagnetic molecule binding to the molecular target (Bedell et al. 2004). Rather,

our probes modulate microvascular dynamics, namely permeability and blood flow,

which provides a much higher sensitivity than conventional probes. Quantitative

analyses of changes in local microvascular permeability and/or blood flow following

administration of a targeted probe provide an estimation of the relative tissue content

of the molecular entity of interest.

Sample application areas

The MR imaging methodologies described here have a wide range of applications in

the drug development process. Three illustrative examples are briefly described here.

Multiple sclerosis

Since the landmark Interferon-beta-1b trial in the early 1990s, a number of MRI-

based surrogate endpoints are typically used in clinical trials in MS: (i) count and

volume of MS plaques as visible in T2-weighted or FLAIR acquisitions; (ii) count of

lesions showing signal enhancement following administration of gadolinium-DTPA;

(iii) count of so-called ‘‘black holes’’ (Truyen et al. 1996) as visible on T1-weighted

scans. Traditionally, these surrogate endpoints are quantified using assessment by a

Figure 3. Native MRIs are registered to stereotaxic space and corrected for non-uniformity artefacts. They

are then classified into white matter, grey matter, and CSF (1). Deformable models are fit to the white

matter surface (3) and pial surface (4); the accuracy of the fit can be seen in (2), where the red line

represents the pial surface, the green line the white matter surface. Once the two surfaces are extracted

cortical thickness can be extracted and smoothed along the surface (5).

S62 A. P. Zijdenbos et al.
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human operator, either by or under supervision of a radiologist. Using modern image

processing technology as described earlier, it is possible to completely automate the

quantifications of these endpoints. This removes all operator-induced measurement

variability and allows for more efficient analyses. In addition, results can be analysed

using statistical techniques now ubiquitous in the brain mapping community. As an

example, Figure 4 shows a 3-D probabilistic distribution of MS lesions, derived from a

population of 462 MS patients. In essence, the question of whether a pharmaceutical

compound has an effect on the burden of disease can be answered by a statistical

comparison of two such lesion distributions, one derived from the placebo group, one

from the active group. In addition, the application of standard voxel-wise statistical

analysis techniques (Ashburner et al. 2000) allows the correlation of clinical outcomes

against local brain morphology (Charil et al. 2003).

Alzheimer’s disease

In Alzheimer’s Disease (AD) the definitive pathological markers are amyloid plaques

and neurofibrillary tangles. These are not visible in standard morphometric MRI, so

the surrogate marker used is macroscopic atrophy, which co-locates with the

microscopic hallmarks of the disease (Braak et al. 1991, Chetelat & Baron 2003, Fox

et al. 2000, Gomez-Isla et al. 1997). In a recent study (Lerch et al. 2004), 19 AD

patients and 17 controls were investigated using structural MRI and cortical thickness

measurements. The results from this study clearly show statistically significant

differences in cortical thickness between the two groups. Furthermore, the resulting

maps of atrophy (Figure 5) clearly show region specificity of thickness decline in AD.

In conclusion, measures of cortical thickness from MRI provide a detailed view of

AD, showing clear and believable differences between patients and controls. Moreover,

Figure 4. In red: 3D surface rendering of the MS lesion probability distribution derived from 462 MS

patients. For reference, the ventricular system is rendered in white.

Brain imaging in drug R&D S63
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since the technique is in vivo, progression can be monitored and correlations performed

against cognitive scores, further elucidating the disease process.

Oncology

Oncology is an area where MRI has been utilized since its first use as a diagnostic

imaging tool. As in MS, measurements of tumour size have been used as surrogate

endpoints in oncology clinical trials, although the details of the quantification metrics

used are still controversial (Mazumdar et al. 2004, Park et al. 2003). Nevertheless, the

type of quantitative MRI analysis techniques described here, are able to not only

identify tumours volumetrically, but also subtype the different components of the

pathology (Figure 6). From this tissue characterization all currently debated tumour

response criteria can be easily calculated.

Although the structural assessment of tumour response is commonplace in

oncology clinical trials, molecular MRI is a potentially more rewarding technique

for use in drug development. The drug development industry is currently moving

away from conventional cytotoxic therapies and towards the generation of rationale

targeted therapies, including growth-factor receptor inhibitors, anti-angiogenesis

drugs, enzyme-activated prodrugs, and gene therapies. The ability to non-invasively

detect the molecular targets of these new drugs and monitor their response to

therapeutic intervention would greatly facilitate their development, shortening the

time from the bench to clinical use.

We have specifically designed probes which allow for detection of (1) mediators of

angiogenesis, (2) matrix metalloproteinases, and (3) reporter genes. We are currently

evaluating the ability of these probes to image these targets in vivo in a rat C6 glioma

model (Bedell et al. 2004). The C6 glioma is a model of the human brain tumour,

glioblastoma multiforme, which is an aggressive tumour, generally resistant to

currently available therapies, and carries a dismal prognosis. Both academic and

research labs put intense effort into the development of drugs which specifically

inhibit the actions of molecules such as vascular endothelial growth factor (VEGF),

which promotes angiogenesis, and matrix metalloproteinases, which are involved in

tumour invasion, metastasis, and angiogenesis (Kodera et al. 2000). The ability to

non-invasively evaluate the efficacy of these new agents in vivo should bring these

Figure 5. T-statistics of the difference between AD patients and normal elderly controls. The results show

widespread atrophy with a specific focus on the temporal lobes and the limbic cortex.

S64 A. P. Zijdenbos et al.
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treatments to patients more rapidly and at a lower cost to overburdened health-care

systems.

Discussion

From a wide range of neuroimaging based technologies, we have addressed two

distinct areas of research with strong potential in the drug development arena:

sophisticated, quantitative analysis of imaging data acquired with traditional acquisi-

tion technology, and molecular MRI (mMRI), and exciting new image acquisition

methodology. The potential uses, of which there many, of these techniques were

illustrated for three different application areas: automatic lesion quantification in

multiple sclerosis, cortical thickness measurements in AD, and early reports of mMRI

applications in oncology. These applications provide a glimpse of the tremendous

potential that imaging biomarkers have in drug research and discovery.

Given the logistical and algorithmic challenges posed by the automatic analysis of

thousands of MRI data sets, we consider the ‘‘pipeline’’ framework, in combination

with the concept of stereotaxic space, essential to the data processing of large image

databases. The application of this framework to a phase III clinical trial in MS shows

that it is possible to build and execute a fully automatic image processing pipeline

which delivers the efficacy parameters dictated by such a study. Moreover, the ability

to rapidly re-configure the processing pipeline and re-analyse the data in response to

Figure 6. Classification and sub-typing of tumour components based on four MRI modalities. The four

MRI images are, clockwise from top left: T1-weighted, T1-weighted following administration of

gadolinium-DTPA, T2-weighted and proton-density-weighted. The colour image shows a 6-tissue-class

classification based on these four input images, with white�/white matter; brown�/grey matter; green�/

cerebrospinal fluid; purple�/oedema; red�/enhancing ring; turquoise�/necrotic centre.

Brain imaging in drug R&D S65
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changing requirements of the study is an important advantage over manual or semi-

automatic approaches. Such a fully automated approach allows for the addition of new

image processing techniques as they are developed to continually improve the

potential research targets in drug R&D. To cite one example of the benefits provided

by automated MRI analysis, in validation studies of the MS study described here

(Zijdenbos et al. 2002), the average coefficient of variation (CV) of total lesion load

assessments went from 44% for independent manual validation, to 27% for on site

manual validation, to 0% for the automated image analysis pipeline. Moreover, the

automated analysis of MRI provides an objective, reproducible in vivo metric of

disease progression and remission, often in contrast to the neurological examination.

To illustrate this distinction, consider that a small MS lesion in a critical brain region

can result in a very poor clinical assessment score (EDSS) whereas a large lesion in a

relatively silent area may only minimally affect the EDSS score. In these cases, the

MRI burden of disease more properly reflects disease progression (Evans et al. 1997).

Similarly, the ability to quantify and localize atrophy using automated cortical

thickness measurements is well illustrated here by application to Alzheimer’s Disease

(Lerch et al. 2004). The patterns of thinning co-locate well with the putative presence

of microscopic pathological features (plaques and tangles), increasing confidence in

these results. Lastly, the development of mMRI probes can, in the future, extend

analysis to move beyond macroscopic anatomical changes to the study of particular

chemical targets.

The unparalleled ability of MRI studies to follow patients longitudinally combined

with automated analysis capabilities permits a direct view on disease progression and

the potential influence of pharmacological interventions on that process.
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