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Registration

Registration is the process of alignment of medical 
imaging data (usually for the purpose of comparison).

Intra-subject: between data volumes from the
same subject

Inter-subject: between data volumes from
different subjects



Motivation / Uses

• image guided surgery

• analysis of functional images

• characterization of normal and 
abnormal anatomical variability

• detection of change in disease state 
over time

• visualization of multimodality data

• modeling anatomy in the process of 
segmentation

• atlas guidance for  anatomical 
interpretation T Peters, K Finnis, D. Gobbi, 

Y Starreveld - RRI
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Motivation / Uses

• image guided surgery

• analysis of functional images

• characterization of normal and abnormal 
anatomical variability

• detection of change in disease state 
over time

• visualization of multimodality data

• modeling anatomy in the process of 
segmentation

• atlas guidance for  anatomical 
interpretation Talairach Atlas overlaid 

on MRI



Inter-subject registration 
requires a well defined target 

space.



Stereotaxic Space

• based on anatomical 
landmarks (anterior and 
posterior commissures)

• originally used to guide blind 

stereotaxic neurosurgical 

procedures (thalamotomy, 

pallidotomy)

• now used by NeuroScientific 

community for interpretation 

and comparison of results

J. Talairach and P. Tournoux, Co-planar stereotactic atlas of 
the human brain: 3-Dimensional  proportional system: an 
approach to cerebral imaging, Stuttgart,  Georg Thieme 
Verlag, 1988



AC-PC line

anterior commissure

AC-PC line

posterior commissure

VAC



Stereotaxic Space

J Talairach & P Tournoux, 
Co-planar stereotaxic atlas of the human brain, 
Georg Thieme, 1988



Stereotaxic Space



Talairach Atlas

• is derived from an unrepresentative single 60-yr old  
female cadaver brain (when most functional 
activation  studies are done on young living 
subjects!)

• ignores left-right hemispheric differences

• has variable slice separation, up to 4mm

• while it contains transverse, coronal and sagittal 
slices,  it is not contiguous in 3D

Drawbacks for functional imaging:



Stereotaxic Space

• Provides a conceptual framework for the completely 
automated, 3D analysis across subjects.

• Facilitate intra/inter-subject comparisons across
– time points, subjects, groups, sites

• Extrapolate findings to the population as a whole

• Increase activation signal above that obtained from 
single subject

• Increase number of possible degrees of freedom allowed 
in statistical model

• Enable reporting of activations as co-ordinates within a 
known standard space
– e.g. the space described by Talairach & Tournoux

Advantages for functional imaging:



Stereotaxic Space

• Allows the use of spatial masks for post-processing 
(anatomically driven hypothesis testing)

• allows the use of spatial priors (classification)

• allows the use of anatomical models (segmentation)

• provides a framework for statistical analysis with well-
established random field models

• Allows the rapid re-analysis using different criteria

Advantages (continued):



Registration

Requirements:
1- similarity measure

how to define the match? what is the goal?

2- well defined transformation
how to define the mapping?

3- method to find transformation
how to find the mapping given the similarity constraint?



Similarity Measures

0D - points

1D - lines

2D - surfaces

3D - volumes

nD - data over time

• Extrinsic
frames, moulds, masks, markers

• Intrinsic
anatomical landmarks

• Non-image data
acquisition based

Review: P. van den Elsen, “Medical Image registration: a review with
classification”, IEEE Eng in Med & Biol, 1993 12(1):26-39



Point Similarity Measures

• Requires identification of homologous 
landmark points

• Based on minimization of distance between 
points

Er
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Number of points

T

T found by SVD or Procrustes





Line Similarity Measures

• Based on distance 
between homologous 
lines

• Used for intra-subject 
registration

• Difficult to use in inter-
subject registration due 
to (lack of) homology

G. Subsol, INRIA



Surface Similarity Measures

• Based on distance 
between surfaces

• need to ensure 
that the same 
anatomical surface 
is extracted from 
both data sets

Pelizzari CA, Chen GTY, Spelbring DR, Weichselbaum RR, Chen C-T. Accurate three-
dimensional registration of CT, PET, and/or MR images of the brain. J Comput Assist 
Tomogr 1989;13(1):20-26

       "Head-and-hat"
1. Segment slices  to get SA contours.

      Compute centroid  of SA: cA.

2. For each xBi, find inter section  xAi

 along path to cA.

3. min
T

D = d S [xAi ,T(xBi )]∑
i
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S B
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Surface based registration

Surface model Surface data

Surface data matched to model

Randy Ellis, Queens U.A Johnson, Robotic Inst., CMU

Local geometry constraints



Volume Similarity Measures

The pixel/voxel intensities are used directly
to compute the similarity measure

Intra-modality (same modality)
•  similar contrast
•  similar resolution
•  similar sampling (pixel/voxel size)
•  similar structures have similar intensities
Inter-modality 
•  different contrast
•  different resolution
•  different sampling (pixel/voxel size)
•  different structures may have similar intensities,
  and similar structures may have the same intensity



Volume Similarity Measures

INTRA-MODALITY
• Absolute or squared difference

– Hoh93, Lange93, Christensen95, 
Hajnal95, Kruggel95

• Stochastic Sign Change (SSC),
Deterministic Sign Change (DSC)

– Venot83, Minoshima92, Hua93, 
Hoh93

• Cross Correlation 

– Junck90, van den Elsen93, Hill93,
Collins94, Lemieux94, Studholme95

• Fourier Domain Correlation

– de Castro87, Leclerc87, Chen93,
Lehmann96

• Optic Flow Field

– Barber95, Meunier96

•  Very simple (fast) to compute
•  Must have similar intensities
•  Unbounded maximum value
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Volume Similarity Measures
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•  Very simple (fast) to compute
•  Must have similar intensities
•  Unbounded maximum value
•  Can add artificial noise if needed
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– Barber95, Meunier96



Volume Similarity Measures
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•  Must have linear relation
   between intensities
•  Bounded value [0..1]

INTRA-MODALITY
• Absolute or squared difference

– Hoh93, Lange93, Christensen95, 
Hajnal95, Kruggel95

• Stochastic Sign Change (SSC),
Deterministic Sign Change (DSC)

– Venot83, Minoshima92, Hua93, 
Hoh93

• Cross Correlation 

– Junck90, van den Elsen93, Hill93,
Collins94, Lemieux94, Studholme95

• Fourier Domain Correlation

– de Castro87, Leclerc87, Chen93,
Lehmann96

• Optic Flow Field

– Barber95, Meunier96



Volume Similarity Measures

INTER-MODALITY

• Variance of Ratios
– Woods92,93, Hill93, Zuo96
• Min. variance of ratios in
segments

– Cox94, Ardekani95
• Mutual Information/ Entropy

– Collignon93, Studholme94
• Correlation Ratio

– Roche98
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Volume Similarity Measures
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Transformation Types

Linear
rigid body: 3 rotations, 3 translations

Procrustes: 3 rotations, 3 translations, 1 scale

affine: 3 rotations, 3 translations, 3 scale, 3 skew

Piecewise Linear
Talairach: 12 regions defined by 2 points + 6 scales

Nonlinear
polynomial: f(x) = ax^3 + bx^2 + cx + d

basis functions: cosine, Fourier, wavelet

physical model: elastic, fluid with dense deformation field



mni_autoreg

• Volumetric registration with minctracc

• Linear
– lsq6 (rigid body)

– lsq7 (rigid + isotropic scale)

– lsq9 (rigid + 3 scales)

– Lsq12 (full affine)

• Non-linear
– Deformation field



mni_autoreg: mritoself

mritoself scan1.mnc scan2.mnc t1-2.xfm

-veryclose same session
-close simplex 3
-far same scanner,

diff sessions
-xcorr, -vr, -mi (default)
-lsq6,-lsq7,-lsq9
-mask



mni_autoreg: mritoself

mritoself scan1.mnc scan2.mnc t1-2.xfm

mincresample scan1.mnc scan1-like2.mnc \
-transformation t1-2.xfm \
-like scan2.mnc



Stereotaxic Registration methods

• Talairach Talairach and Tournoux 

• mritotal Collins

• SPM Friston, Ashburner

• FLIRT,FSL Jenkinson, Smith 



Talairach

• identify AC/PC on mid-
sagittal

• define vertical, lateral 
and anterior-posterior 
extents

• define 12 piecewise 
linear transformations:

– left / right

– above / below AC-PC

– anterior-AC / AC-PC / PC-
posterior

anterior

posterior

left

rightsuperior

inferior



mritotal

• Principal axis transformation

• correlation of 16mm fwhm 
blurred data

• correlation of 8mm fwhm blurred 
data

• correlation of 8mm gradient 
magnitude data

PAT

http://www.bic.mni.mcgill.ca/software/mni_autoreg/
Collins et al, JCAT 1994



mni_autoreg: mritotal

mritotal scan1.mnc t_stx.xfm

-crops, blurs
-transformation
-model

mincresample scan1.mnc scan_stx.mnc \
-transformation t_stx.xfm \
-like stx_target.mnc



FLIRT

• Correlation ratio

• Multi-resolution procedure

• Powell’s search for optimmization

Jenkinson, M. and Smith, S. (2001a). 
A global optimisation method for robust affine registration of brain images. 
Medical Image Analysis, 5(2):143-156



Spatial Normalisation

Spatial Normalisation

Original image

Template
image

Spatially normalised

Determine the spatial transformation 
that minimises the sum of squared 
difference between an image and a 
linear combination of one or more 
templates.

Begins with an affine registration to 
match the size and position of the 
image.

Followed by a global non-linear 
warping to match the overall brain 
shape.

Uses a Bayesian framework to 
simultaneously maximise the 
smoothness of the warps.

J. Ashburner, FIL, London

SPM: Statistical Parametric Mapping



EPI

T2 T1 Transm

PD PET

305T1

PD T2 SS

Template Images “Canonical” images

A wider range of 
different 
contrasts can be 
normalised by 
registering to a 
linear 
combination of 
template images.

Spatial normalisation can be 
weighted so that out of brain 
voxels do not influence the 
result.

Similar weighting masks 
can be used for normalising 
lesioned
brains.

J. Ashburner, FIL, London



Canonical Images

• SPM
– SPM96: average of 12 manually transformed 

vols
– SPM97: blurred colin27, mni305 if downloaded
– SPM99:               mni305; colin27 option
– SPM2b11RC: icbm152

• mritotal
– mni305
– icbm152

• Flirt
– mni305



Examples: MNI305 average brain

Y=0

Y=20

Y=-30

X=50

X=10

X=20

Z=20

Z=-10

Z=0

A.C. Evans et al, 1992



Examples: ICBM152 averages

Average T1 Average PD Average T2



Canonical targets

mni305 icbm152 child175 colin27

www.bic.mni.mcgill.ca/icbmview



Things to take home

• Mapping depends on
– Similarity function

– Target model

– Optimization function/strategy

• Use a standard model!



fin



Comparison

Preliminary results from consistency study reveals differences in robustness

In each graph the average rms error (in mm) 
is plotted over a set of initially rotated image 
volumes

Steve Smith, FMRIB,
Oxford


