MINC meeting 2003 Registration techniques issues

D. Louis Collins <louis@bic.mni.mcgill.ca>

Outline

Introduction to registration

- definitions
- motivation

Stereotaxic Space

Registration

- similarity measures
- transform types
- optimization procedures

Methods

- Talairach, SPM, AIR, MRITOTAL
- Applications

Registration

Registration is the process of alignment of medical imaging data (usually for the purpose of comparison).

Intra-subject:between data volumes from the
same subjectInter-subject:between data volumes from
different subjects

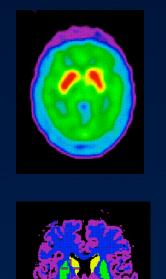
image guided surgery

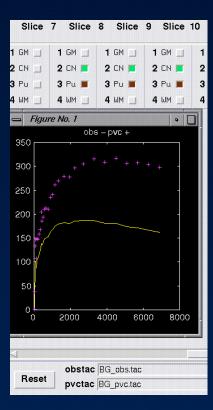
- analysis of functional images
- characterization of normal and abnormal anatomical variability
- detection of change in disease state over time
- visualization of multimodality data
- modeling anatomy in the process of segmentation
- atlas guidance for anatomical interpretation

VIPER

T Peters, K Finnis, D. Gobbi, Y Starreveld - RRI

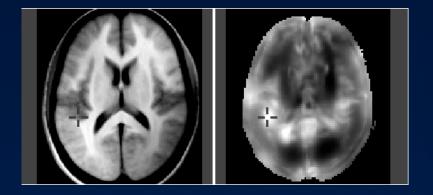
- image guided surgery
- analysis of functional images
- characterization of normal and abnormal anatomical variability
- detection of change in disease state over time
- visualization of multimodality data
- modeling anatomy in the process of segmentation
- atlas guidance for anatomical interpretation

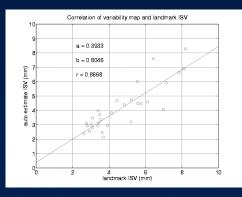




O. Rousset, A Evans - MNI

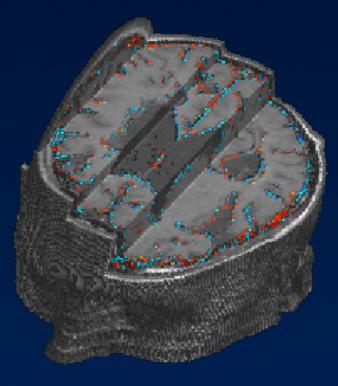
- image guided surgery
- analysis of functional images
- characterization of normal and abnormal anatomical variability
- detection of change in disease state over time
- visualization of multimodality data
- modeling anatomy in the process of segmentation
- atlas guidance for anatomical interpretation





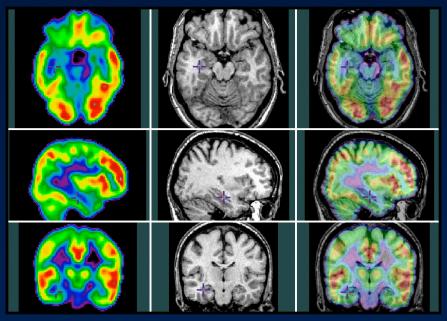
L Collins (94) - MNI

- image guided surgery
- analysis of functional images
- characterization of normal and abnormal anatomical variability
- detection of change in disease state over time
- visualization of multimodality data
- modeling anatomy in the process of segmentation
- atlas guidance for anatomical interpretation



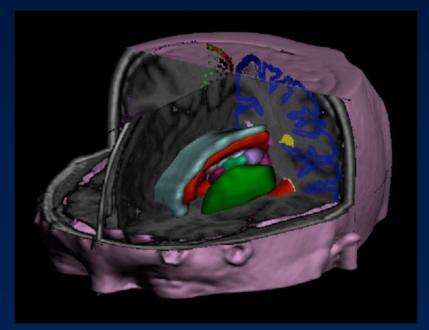
S Smith, P Matthews -Oxford

- image guided surgery
- analysis of functional images
- characterization of normal and abnormal anatomical variability
- detection of change in disease state over time
- visualization of multimodality data
- modeling anatomy in the process of segmentation
- atlas guidance for anatomical interpretation



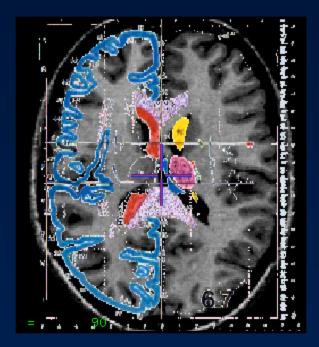
register program - MNI

- image guided surgery
- analysis of functional images
- characterization of normal and abnormal anatomical variability
- detection of change in disease state over time
- visualization of multimodality data
- modeling anatomy in the process of segmentation
- atlas guidance for anatomical interpretation



W. Nowinski - KRDL

- image guided surgery
- analysis of functional images
- characterization of normal and abnormal anatomical variability
- detection of change in disease state over time
- visualization of multimodality data
- modeling anatomy in the process of segmentation
- atlas guidance for anatomical Interpretation

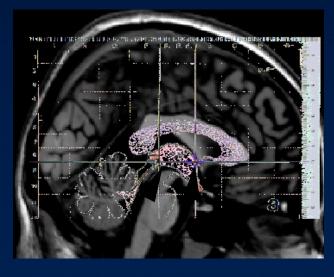


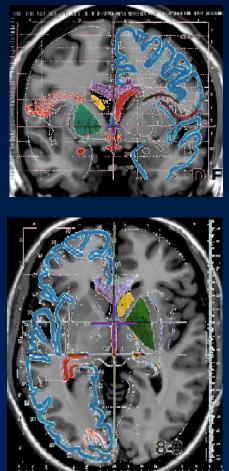
Talairach Atlas overlaid on MRI

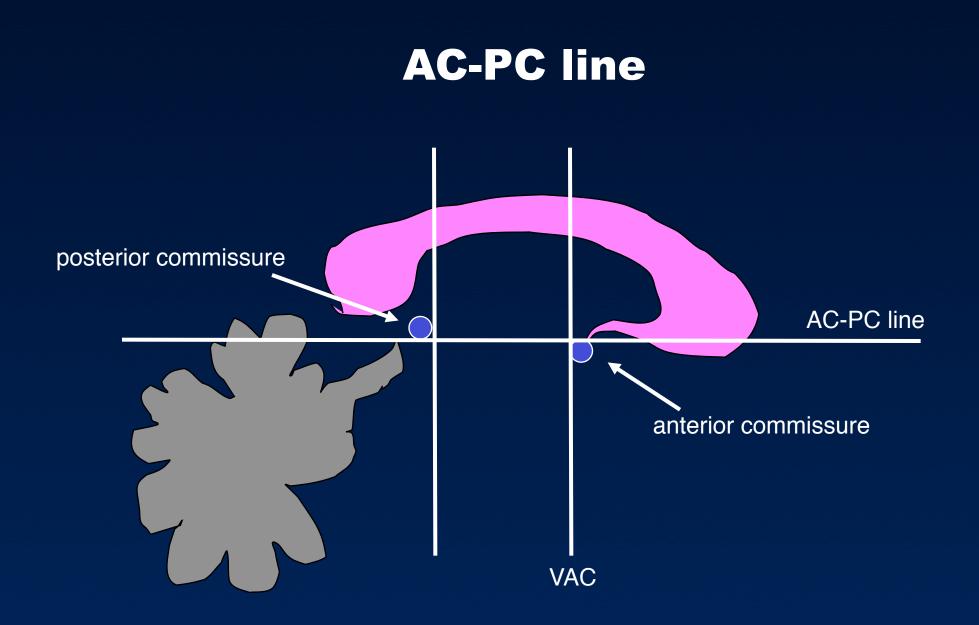
Inter-subject registration requires a well defined target space.

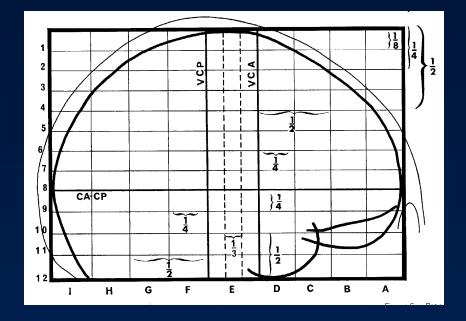
J. Talairach and P. Tournoux, Co-planar stereotactic atlas of the human brain: 3-Dimensional proportional system: an approach to cerebral imaging, Stuttgart, Georg Thieme Verlag, 1988

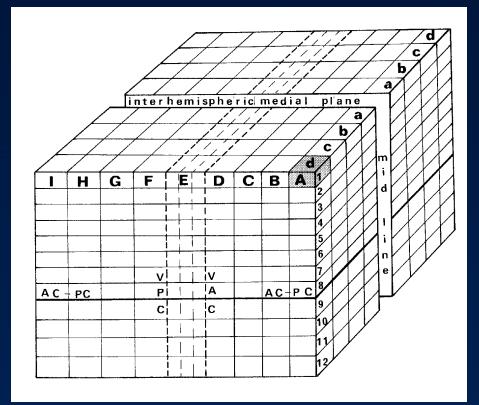
- based on anatomical landmarks (anterior and posterior commissures)
- originally used to guide blind stereotaxic neurosurgical procedures (thalamotomy, pallidotomy)
- now used by NeuroScientific community for interpretation and comparison of results



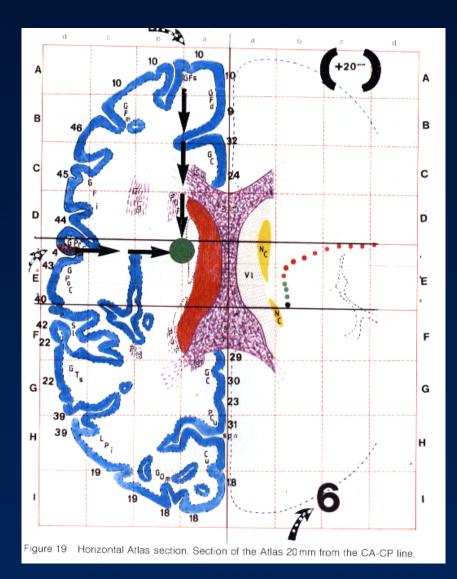


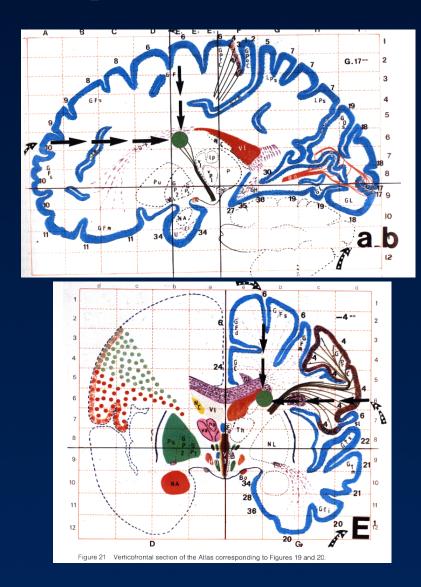






J Talairach & P Tournoux, Co-planar stereotaxic atlas of the human brain, Georg Thieme, 1988





Talairach Atlas

Drawbacks for functional imaging:

- is derived from an unrepresentative single 60-yr old female cadaver brain (when most functional activation studies are done on young living subjects!)
- ignores left-right hemispheric differences
- has variable slice separation, up to 4mm
- while it contains transverse, coronal and sagittal slices, it is not contiguous in 3D

Advantages for functional imaging:

- **Provides a conceptual framework for the completely** automated, 3D analysis across subjects. Facilitate intra/inter-subject comparisons across - time points, subjects, groups, sites **Extrapolate findings to the population as a whole** Increase activation signal above that obtained from single subject Increase number of possible degrees of freedom allowed in statistical model Enable reporting of activations as co-ordinates within a known standard space
 - e.g. the space described by Talairach & Tournoux

Advantages (continued):

- Allows the use of spatial masks for post-processing (anatomically driven hypothesis testing)
- allows the use of spatial priors (classification)
- allows the use of anatomical models (segmentation)
- provides a framework for statistical analysis with wellestablished random field models
- Allows the rapid re-analysis using different criteria

Registration

Requirements: 1- similarity measure

how to define the match? what is the goal?

2- well defined transformation

how to define the mapping?

3- method to find transformation

how to find the mapping given the similarity constraint?

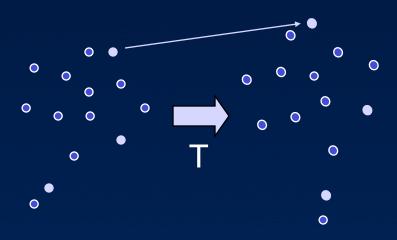
Similarity Measures

Extrinsic
frames, moulds, masks, markers
Intrinsic
anatomical landmarks
Non-image data acquisition based
OD - points
1D - lines
2D - surfaces
3D - volumes
nD - data over time

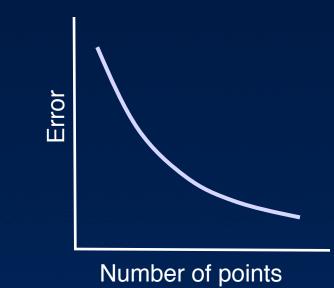
Review: P. van den Elsen, "Medical Image registration: a review with classification", IEEE Eng in Med & Biol, 1993 12(1):26-39

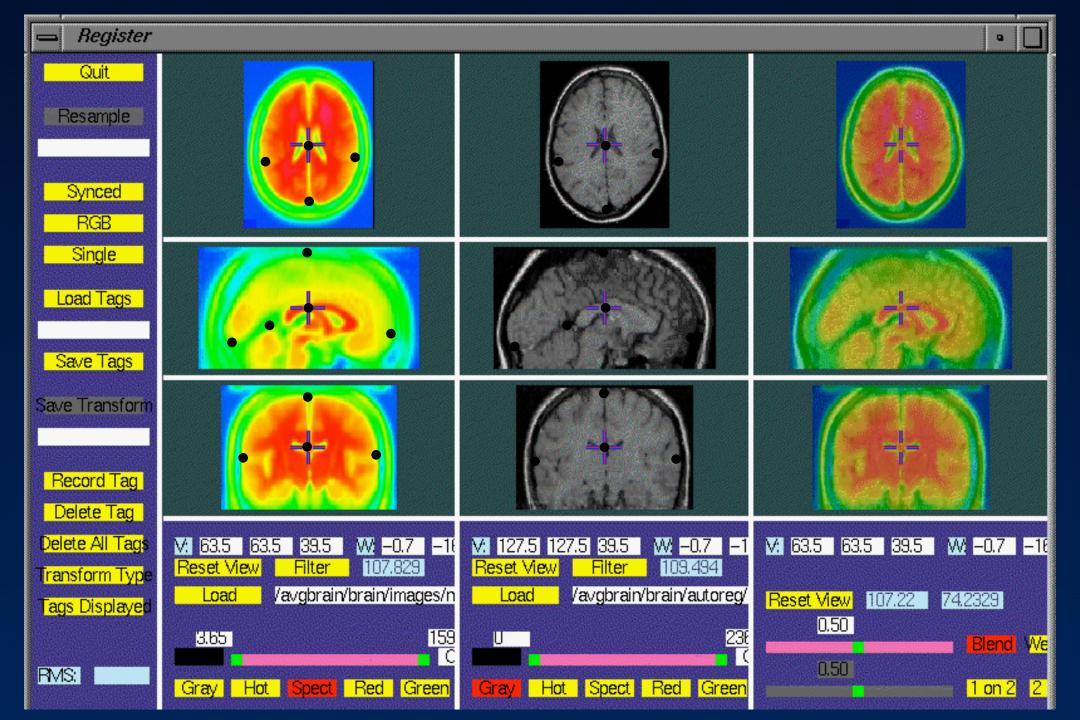
Point Similarity Measures

- Requires identification of homologous landmark points
- Based on minimization of distance between points



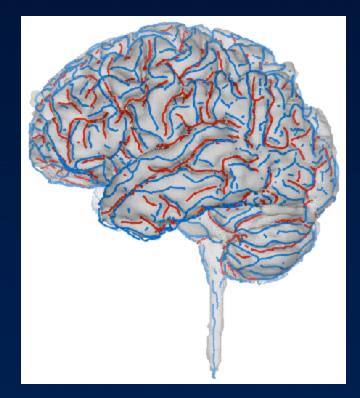
T found by SVD or Procrustes





Line Similarity Measures

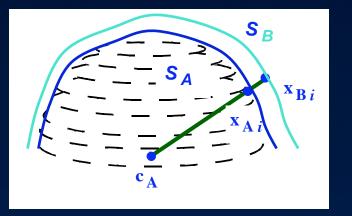
- Based on distance between homologous lines
- Used for intra-subject registration
- Difficult to use in intersubject registration due to (lack of) homology

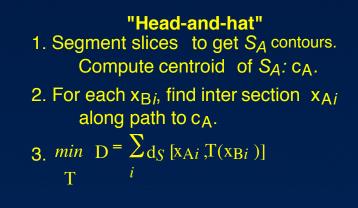


G. Subsol, INRIA

Surface Similarity Measures

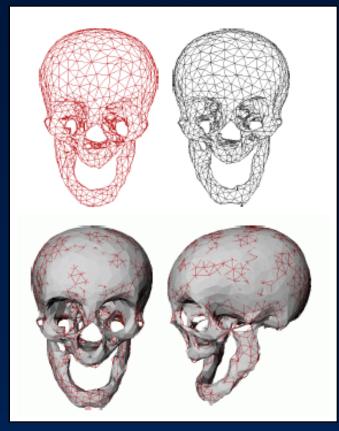
- Based on distance between surfaces
- need to ensure that the same anatomical surface is extracted from both data sets



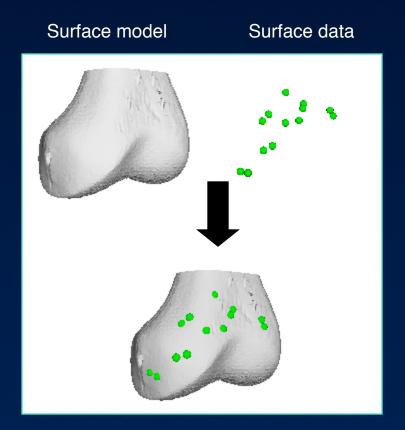


Pelizzari CA, Chen GTY, Spelbring DR, Weichselbaum RR, Chen C-T. Accurate threedimensional registration of CT, PET, and/or MR images of the brain. J Comput Assist Tomogr 1989;13(1):20-26

Surface based registration



Local geometry constraints A Johnson, Robotic Inst., CMU



Surface data matched to model Randy Ellis, Queens U.

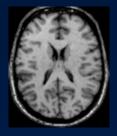
The pixel/voxel intensities are used directly to compute the similarity measure

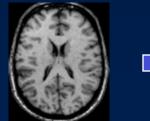
Intra-modality (same modality)

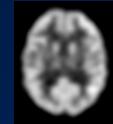
- similar contrast
- similar resolution
- similar sampling (pixel/voxel size)
- similar structures have similar intensities

Inter-modality

- different contrast
- different resolution
- different sampling (pixel/voxel size)
- different structures may have similar intensities, and similar structures may have the same intensity

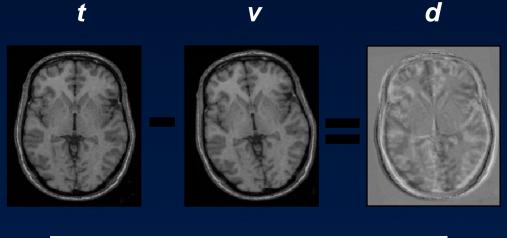


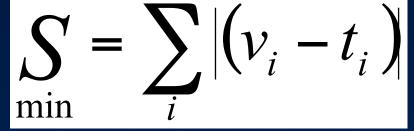




INTRA-MODALITY

- Absolute or squared difference
 - Hoh93, Lange93, Christensen95, Hajnal95, Kruggel95
- Stochastic Sign Change (SSC), Deterministic Sign Change (DSC)
 - Venot83, Minoshima92, Hua93, Hoh93
- Cross Correlation
 - Junck90, van den Elsen93, Hill93,
 Collins94, Lemieux94, Studholme95
- Fourier Domain Correlation
 - de Castro87, Leclerc87, Chen93, Lehmann96
- Optic Flow Field
 - Barber95, Meunier96

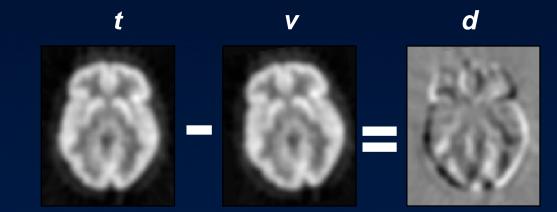




- Very simple (fast) to compute
- Must have similar intensities
- Unbounded maximum value

INTRA-MODALITY

- Absolute or squared difference
 - Hoh93, Lange93, Christensen95, Hajnal95, Kruggel95
- Stochastic Sign Change (SSC), Deterministic Sign Change (DSC)
 - Venot83, Minoshima92, Hua93, Hoh93
- Cross Correlation
 - Junck90, van den Elsen93, Hill93, Collins94, Lemieux94, Studholme95
- Fourier Domain Correlation
 - de Castro87, Leclerc87, Chen93, Lehmann96
- Optic Flow Field
 - Barber95, Meunier96



 $S = \sum z(d_i - d_{i-1})$ max rows. cols.

• Very simple (fast) to compute

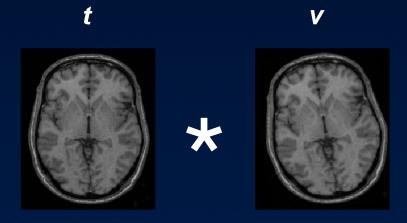
slices

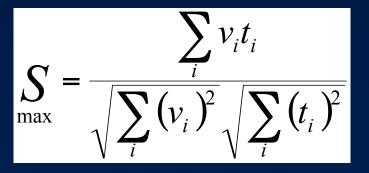
- Must have similar intensities
- Unbounded maximum value
- Can add artificial noise if needed

INTRA-MODALITY

- Absolute or squared difference
 - Hoh93, Lange93, Christensen95, Hajnal95, Kruggel95
- Stochastic Sign Change (SSC), Deterministic Sign Change (DSC)
 - Venot83, Minoshima92, Hua93, Hoh93
- Cross Correlation
 - Junck90, van den Elsen93, Hill93, Collins94, Lemieux94, Studholme95
- Fourier Domain Correlation
 - de Castro87, Leclerc87, Chen93, Lehmann96
- Optic Flow Field
 - Barber95, Meunier96

- Must have linear relation between intensities
- Bounded value [0..1]



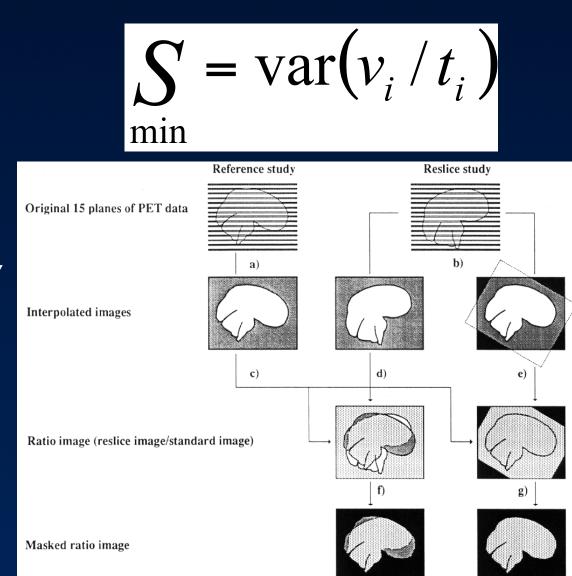


1.0

р

INTER-MODALITY

- Variance of Ratios
- Woods92,93, Hill93, Zuo96
- *Min. variance of ratios in segments*
- Cox94, Ardekani95
 - Mutual Information/ Entropy
- Collignon93, Studholme94
 - Correlation Ratio
- Roche98



INTER-MODALITY

- Variance of Ratios
- Woods92,93, Hill93, Zuo96
 - Min. variance of ratios in
- *segments* – Cox94, Ardekani95
- Mutual Information/ Entropy
- Collignon93, Studholme94
 - Correlation Ratio
- Roche98

$$\sum_{\max} = \sum_{v,t} p_{AB}(a,b) \log \frac{p_{AB}(a,b)}{p_A(a)p_B(b)}$$

Where:

$$p_A(a) \& p_B(b)$$

 $p_{AB}(a,b)$

marginal probability distributions
joint probability distribution

 $p_{AB}(a,b) = p_A(a)p_B(b)$ If statistically independent

If related by 1:1 mapping T().

$$p_A(a) = p_B(T(a)) = p_{AB}(a, T(a))$$

Transformation Types

Linear

rigid body:3 rotations, 3 translationsProcrustes:3 rotations, 3 translations, 1 scaleaffine:3 rotations, 3 translations, 3 scale, 3 skew

Piecewise Linear

Talairach:12 regions defined by 2 points + 6 scales

Nonlinear

polynomial: $f(x) = ax^3 + bx^2 + cx + d$ basis functions:cosine, Fourier, waveletphysical model:elastic, fluid with dense deformation field

mni_autoreg

Volumetric registration with minctracc

Linear

- Isq6 (rigid body)
- Isq7 (rigid + isotropic scale)
- Isq9 (rigid + 3 scales)
- Lsq12 (full affine)
- Non-linear
 - Deformation field

mni_autoreg: mritoself

mritoself scan1.mnc scan2.mnc t1-2.xfm

-veryclose same session -close simplex 3 -far same scanner, diff sessions -xcorr, -vr, -mi (default) -lsq6,-lsq7,-lsq9 -mask

mni_autoreg: mritoself

mritoself scan1.mnc scan2.mnc t1-2.xfm

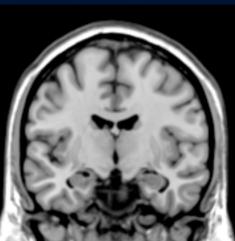
mincresample scan1.mnc scan1-like2.mnc \
 -transformation t1-2.xfm \
 -like scan2.mnc

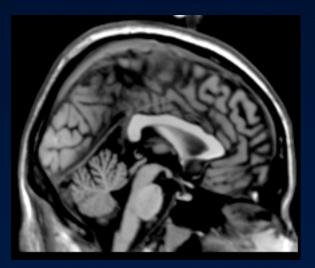
Stereotaxic Registration methods

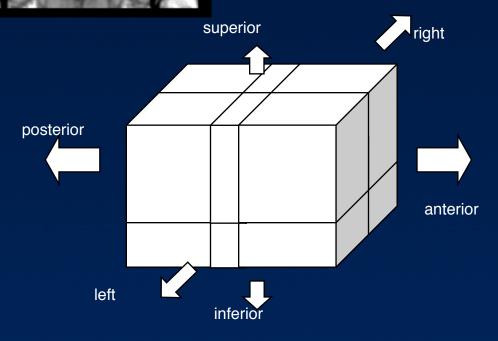
- Talairach Talairach and Tournoux
- mritotal Collins
- SPM Friston, Ashburner
- FLIRT,FSL Jenkinson, Smith

Talairach

- identify AC/PC on midsagittal
- define vertical, lateral and anterior-posterior extents
- define 12 piecewise linear transformations:
 - left / right
 - above / below AC-PC
 - anterior-AC / AC-PC / PCposterior

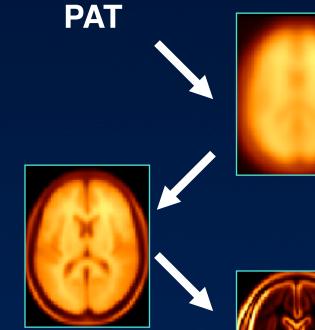






mritotal

- Principal axis transformation
- correlation of 16mm fwhm blurred data
- correlation of 8mm fwhm blurred data
- correlation of 8mm gradient magnitude data



http://www.bic.mni.mcgill.ca/software/mni_autoreg/ Collins et al, JCAT 1994

mni_autoreg: mritotal

- mritotal scan1.mnc t_stx.xfm
- -crops, blurs
- -transformation
- -model

mincresample scan1.mnc scan_stx.mnc \
 -transformation t_stx.xfm \
 -like stx_target.mnc

FLIRT

- Correlation ratio
- Multi-resolution procedure
- Powell's search for optimmization

Jenkinson, M. and Smith, S. (2001a). A global optimisation method for robust affine registration of brain images. *Medical Image Analysis*, 5(2):143-156

SPM: Statistical Parametric Mapping

Spatial Normalisation

Determine the spatial transformation that minimises the sum of squared difference between an image and a linear combination of one or more templates.

Begins with an affine registration to match the size and position of the image.

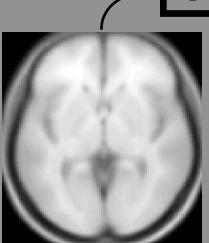
Followed by a global non-linear warping to match the overall brain shape.

Uses a Bayesian framework to simultaneously maximise the smoothness of the warps.

Original image

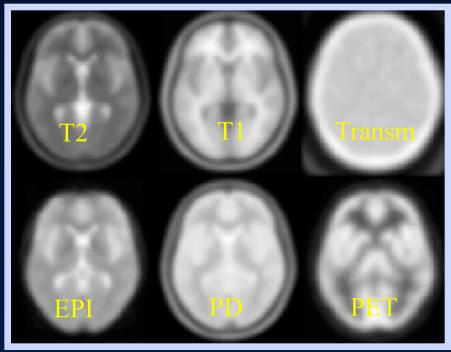
Spatially normalised

Spatial Normalisation

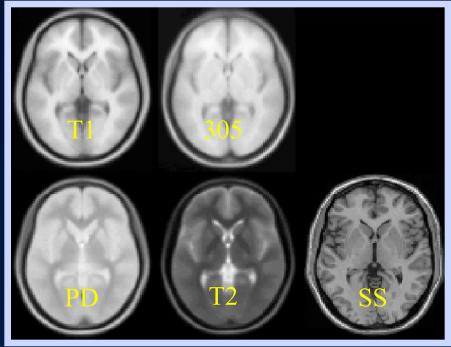


Template image

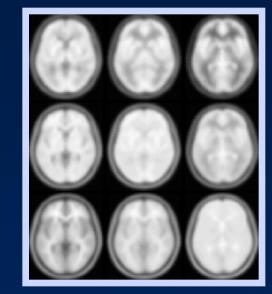
J. Ashburner, FIL, London



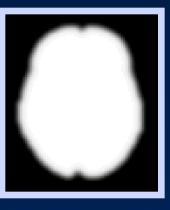
Template Images



"Canonical" images



A wider range of different contrasts can be normalised by registering to a linear combination of template images.



Spatial normalisation can be weighted so that out of brain voxels do not influence the result.

Similar weighting masks can be used for normalising lesioned brains.

J. Ashburner, FIL, London

Canonical Images

• SPM

- SPM96: vols
- SPM97:
- SPM99:
- SPM2b11RC:

mritotal

- mni305
- icbm152

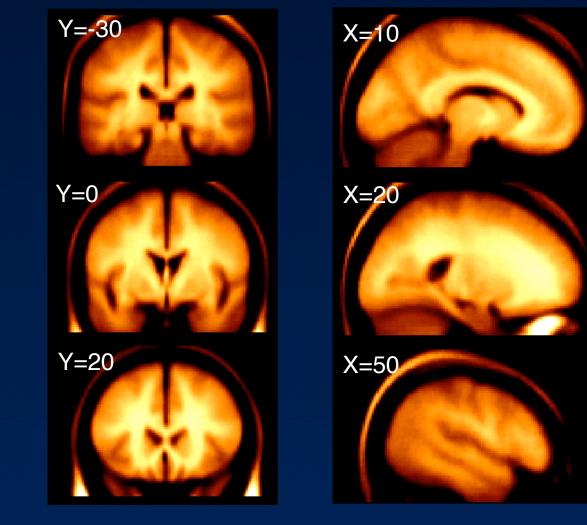
• Flirt

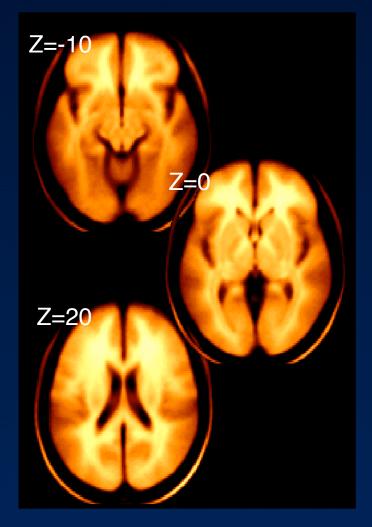
– mni305

average of 12 manually transformed

blurred colin27, mni305 if downloaded mni305; colin27 option icbm152

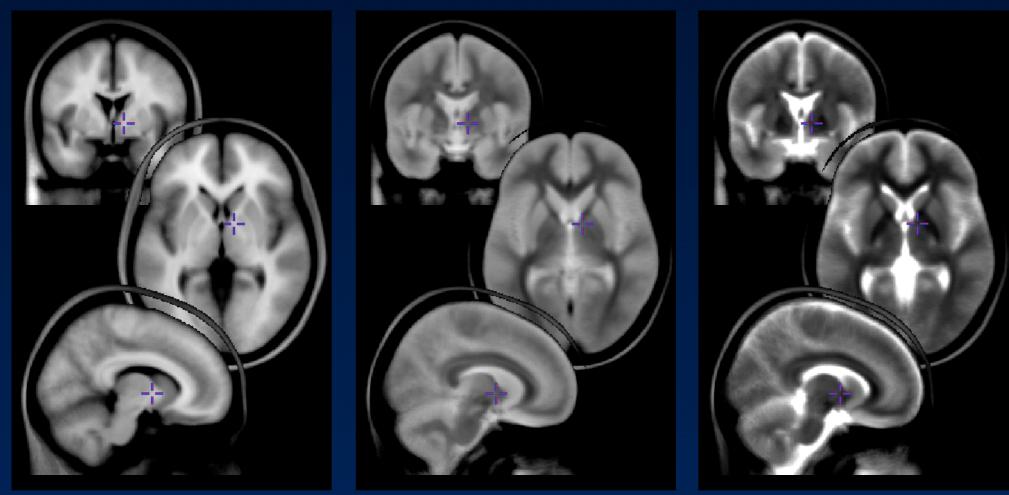
Examples: MNI305 average brain





A.C. Evans et al, 1992

Examples: ICBM152 averages

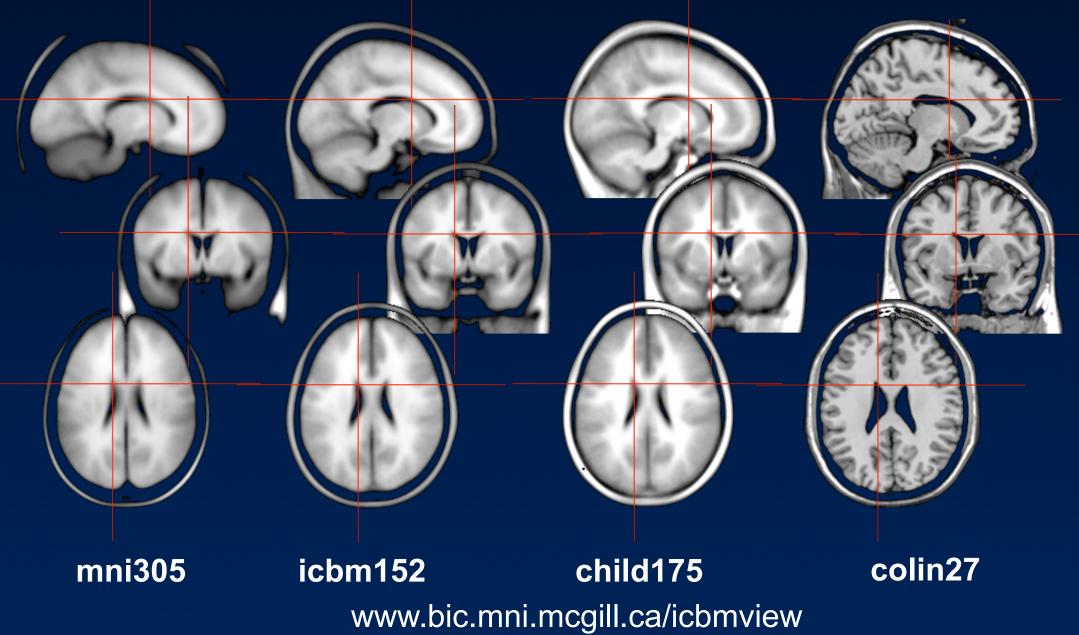


Average T1

Average PD

Average T2

Canonical targets



Things to take home

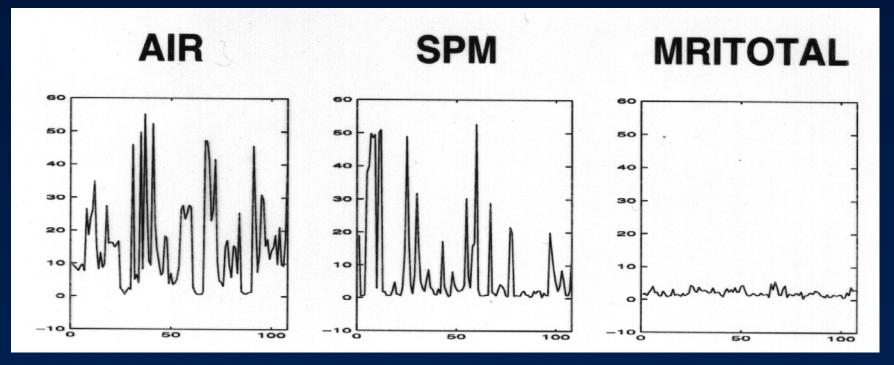
Mapping depends on

- Similarity function
- Target model
- Optimization function/strategy

Use a standard model!

Comparison

Preliminary results from consistency study reveals differences in robustness



In each graph the average rms error (in mm) is plotted over a set of initially rotated image volumes

Steve Smith, FMRIB, Oxford