The future of MINC

Robert D. Vincent bert@bic.mni.mcgill.ca

Outline

- Background
- New features and functions
- Compatibility
- Programming and other nerdy stuff

Background

MINC is built upon a general format

- netCDF: Network Common Data Form
- MINC 1.0 is a specialization of this format

NetCDF Disadvantages:

- Not hierarchical
- Limited data types
- 32-bit file size
- Simple, contiguous data storage

Motivation for change

File sizes are increasing

- Functional imaging, high-resolution anatomical imaging
- May easily exceed 2 gigabytes
- Efficient online viewing
 - Storage of multiple pre-computed resolutions

Richer data types

- Vector, tensor, complex voxels
- Labeled voxels

Hierarchical Data Format 5

NetCDF Disadvantages

- Not hierarchical
- Limited data types
- 32-bit file size
- Simple, contiguous data storage model

HDF5 Advantages

- Fully hierarchical
- Rich set of data types
- 64-bit file size
- Complex, powerful data storage model

MINC 2.0 Features

- Block-structured storage
- Labeled volumes
- Internal compression
- Multi-resolution images

Block-structured storage

- Stores image in a series of Ndimensional blocks
- May improve performance in some cases
- Enables internal compression

Block-structured storage

- In an ordinary MINC volume, data is stored in a simple linear arrangement
- Example: Simple 2x4x4 3D image

Block-structured storage

- In block structured file, nearby voxels are grouped together
- Example: 2x4x4 image with 2x2x2

Labeled volumes

- Associates text labels with voxel values
 - Appropriate for classifier output, for example
 - 0 = "Background", 1 = "White matter", 2 = "Grey matter", and so forth
- Furthers the MINC goal of "selfdescribing" data files

Internal compression

MINC 1.0 External compression

- External program must decompress an entire file
- File must be fully decompressed to read a single voxel
- Uses temporary disk space, bandwidth, and time

MINC 2.0 Internal compression

- Data is compressed on a block-by-block basis
- Invisible to user, compression is internal to library
- Nearly random access
- Parts of the file may be left uncompressed

Multi-resolution images

Applications

- Visualization over networks
- Multi-resolution algorithms

Design – Multiple image objects

- Normal data stored at full resolution
- Additional images stored at 1/2, 1/4, 1/8, etc.
 - Initially will use a simple voxel averaging algorithm
 - May be enhanced/replaced by us or third parties
- Adds at most 1/7 of full-resolution size for 3D images

Compatibility

MINC programs still support NetCDF

- Input Tools automatically "do the right thing"
- Output User must explicitly specify "-2" flag for HDF5

MINC 1.0 "libminc" still supported

- Minor enhancements, new flags
- Some new functions

Very few changes to MINC 1.0 code

– It might actually keep working!

Philosophy

- Formalize MINC 1.0 programming idioms
- Provide a complete set of functions for manipulating image data
- Backward compatibility

Design

- http://www.bic.mni.mcgill.ca/software/minc2/ api_doc-2003-10-31
- Initial implementation in "C", with additional language bindings to follow...

New concepts

- volume type image objects
 - Voxel data
 - Attributes
 - Dimensions

dimension type – individual coordinate axes

- Orientation
- Spacing

• MINC 1.0

- Functions tend to be very general
- Many of functions serve multiple purposes
- Programmer must understand both netCDF and MINC concepts

• MINC 2.0

- Functions tend to be more specialized
- Completely hides details of HDF5/netCDF
- MINC 2.0 must define many more functions (129 and counting vs. less than 50)

Example – get one "real" valued voxel

• MINC 1.0

...

icv = miicv_create(); miicv_setint(icv, MI_ICV_DO_RANGE, TRUE);

miicv_attach(icv, fd, var_id);
miicv_get(icv, coords, lengths, &value);

• MINC 2.0

miget_real_value(volume, coords, 3, &value);

- Example direction cosines
- MINC 1.0

• MINC 2.0

miget_direction_cosines(dimension, cosines);

The future of the future

Language support Perl, Python, Java, C++

New data classes

- Geometric objects
- Transform information

Additional compression methods

- bzip2
- "Lossy" image compression

Credits

- Leila Baghdadi
 - Design, documentation, and programming
- John Sled
 - Design, documentation, and sanity checking
- Many others who have offered advice and opinions!
- netCDF created by UCAR
- HDF5 created by NCSA
- Financial support from NIfTI