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Introduction 
 
A wide number of magnetic resonance imaging (MRI) analysis techniques rely on brain tissue 
segmentation. Automated and reliable tissue classification is a challenging task as the intensity of the 
data typically does not allow a clear delimitation of the different tissue types because of partial volume 
effects, image noise and intensity non-uniformities caused by magnetic field inhomogeneities. To solve 
this problem, classification algorithms traditionally combine data-term (e.g. gray-level intensity or 
gradient values) with prior spatial information (e.g. local neighborhood and/or atlas information). To be 
robust to noise, local interactions between voxels are usually taken into account by using Markov 
random field (MRF) models. In this work, we propose to study the impact of Nonlocal (NL) means 
denoising (Coupe et al. 2008) on brain tissue segmentation. 
 
Method 
 
NL-means filters have been recently shown very competitive results when compared to other denoising 
approaches (Buades et al. 2005). This filter is based on the weighted average of all the voxels of the 
image using a robust similarity measure that takes into account the neighbourhood of the voxels being 
compared. 
 
In our study, the optimized blockwise NL-means filter proposed by Coupe et al (2008) has been used 
with the Rician adaption introduced in (Wiest-Daeslle).The amount of Rician noise in the MRI data is 
 ocally estimated using noise in the image background (Aja et al. 2008). 
 
Our segmentation method is based on an adaptive maximum a posteriori (AMAP) approach (Rajapakse 
et al. 1997) that has been extended by Partial Volume Estimation (Tohka et al. 2004). We start with an 
initial segmentation of the three pure classes (GM, WM, CSF) and background (BKG) using the 
segmentation method of SPM8 (Ashburner and Friston 2005) followed by a PVE of two mixed classes 
(GM-WM and GM-CSF). Subsequently, each intensity value in the resulting image is represented by a 
weighted sum of random variables, each of which describes a pure tissue type. The AMAP estimation 
is adaptive in the sense that local variations of the parameters (means and variance) are modeled as 
slowly varying spatial functions. This does not only account for intensity inhomogeneities, but also for 
other local variations of intensity. Optionally, we use a spatial prior term based on a MRF model. 
 
In order to validate our method, we used a ground truth image from the brainweb database with varying 
noise levels of 1-9%. To estimate the segmentation quality after denoising, we calculated the Kappa 
coefficient of the GM/WM/CSF labels of the brain phantom,. Finally, our proposed approach is 
compared to algorithms implemented in SPM8 and FSL-FAST4 (with MRF and PVE, no atlas priors). 



Results 
 
Figure 1 displays an example of the denoising effect using the T1 brain phantom with 9% noise. In the 
upper row, the denoising effect of the optimized Rician non-local means (ORNLM) filter is compared 
to the T1 image without noise (ground truth) and with 9% noise. The filter successfully minimizes 
noise, while retaining local information of small structures. The two lower rows show the effects of 
MRF, PVE, and ORNLM on segmentation labels (CSF/GM/WM) of the brain phantom with 9% noise. 
The combination of PVE and ORNLM achieves the best qualitative results. 
 
Figure 2 illustrates the effect of MRF, PVE, and ORNLM on segmentation accuracy for varying noise 
levels. The Kappa coefficient is calculated to quantify segmentation accuracy compared to the ground 
truth brain phantom. A Kappa coefficient of 1 means that there is a perfect overlap between the 
segmented image and the ground truth. The ORNLM with PVE (solid purple line) clearly outperforms 
all other approaches, while the additional use of MRF (solid red line) shows no further improvement. 
 
Figure 3 shows the evaluation results for the proposed approach and the FAST4 and SPM8 
segmentation algorithms. The FAST4 method (that also uses PVE and MRF) achieves increased 
segmentation accuracy for all noise levels compared to SPM8 (without PVE and MRF), while the 
ORNLM approach with PVE achieves the best segmentation accuracy. The improvement is largest for 
larger noise levels. 
 
Figure 4 displays the effect of the smoothing parameter h on segmentation accuracy for varying noise 
levels. The estimated smoothing parameter is based on Rician noise estimation, which was 
demonstrated to be optimal in terms of denoising quality for MRI data. However, this value is always 
larger than the optimal one in terms of segmentation accuracy, which is based on a maximal Kappa 
value. The ratio between the optimal for segmentation and denoising is about 0.7. 
 
Conclusion 
 
We have presented a method to improve image partitions using an optimized Rician NL-means filter. 
This approach permits a reliable segmentation for data affected by noise. We demonstrated that our 
denoising filter improves the quality of the segmentation mostly for images with higher noise levels 
(and, for this reason, lower SNR). 
 
The method is based on a computationally efficient blockwise implementation that only requires ~1 
min for computation. The estimated Rician noise in the MRI data allows effective denoising over a 
wide range of varying noise levels and does not need an additional parameter related to the image 
noise. The estimated Rician noise level might be adjusted with a weighting of 0.7 to better preserve 
small structures. For segmentation, structure preservation might be more important than additional 
noise removal. 
 
We suggest this denoising filter as an attractive complement to all available segmentation techniques. 
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