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Abstract

In image processing, restoration is expected to improve the qualitative inspection of the image and the performance of
quantitative image analysis techniques. In this paper, an adaptation of the Non Local (NL-) means filter is proposed for speckle
reduction in ultrasound (US) images. Originally developed for additive white Gaussian noise, we propose to use a Bayesian
framework to derive a NL-means filter adapted to a relevant ultrasound noise model. Quantitative results on synthetic data show
the performances of the proposed method compared to well-established and state-of-the-art methods. Results on real images
demonstrate that the proposed method is able to preserve accurately edges and structural details of the image.

I. INTRODUCTION

In ultrasound imaging, denoising is challenging since the speckle artifacts cannot be easily modeled and are known to be
tissue-dependent. In the imaging process, the energy of the high frequency waves are partially reflected and transmitted at the
boundaries between tissues having different acoustic impedances. The images are also log-compressed to make easier visual
inspection of anatomy with real-time imaging capability. Nevertheless, the diagnosis quality is often low and reducing speckle
while preserving anatomic information is necessary to delineate reliably and accurately the regions of interest. Clearly, the
signal-dependent nature of the speckle must be taken into account to design an efficient speckle reduction filter. Recently, it
has been demonstrated that image patches are relevant features for denoising images in adverse situations [1]–[3]. The related
methodology can be adapted to derive a robust filter for US images. Accordingly, in this paper we introduce a novel restoration
scheme for ultrasound (US) images,strongly inspired from the NonLocal (NL-) means approach [1] introduced by Buades et
al. [1] to denoise 2D natural images corrupted by an additive white Gaussian noise. In this paper, we propose an adaptation
of the NL-means method to a dedicated US noise model [4] using a Bayesian motivation for the NL-means filter [3]. In what
follows, invoking the central limit theorem, we will assume that the observed signal at a pixel is a Gaussian random variable
with mean zero and a variance determined by the scattering properties of the tissue at the current pixel.

The remainder of the paper is organized as follows. In Section II, we give an overview of speckle filters and related methods.
Section III described the proposed Bayesian NL-means filter adapted to speckle noise. Quantitative results on artificial images
with various noise models are presented in Section IV. Finally, qualitative result on real 2D and 3D US images are proposed
in Section V.

II. SPECKLE REDUCTION: RELATED WORK

The speckle in US images is often considered as undesirable and several noise removal filters have been proposed. Unlike
the additive white Gaussian noise model adopted in most denoising methods, US imaging requires specific filters due to the
signal-dependent nature of the speckle intensity. In this section, we present a classification of standard adaptive filters and
methods for speckle reduction.

A. Adaptive Filters
The adaptive filters are widely used in US image restoration because they are easy to implement and control. The commonly-

used adaptive filters - the Lee’s filter [5], Frost’s filter [6], and Kuan’s filter [7] - assume that speckle noise is essentially a
multiplicative noise. Many improvements of these classical filters have been proposed since. At the beginning of the 90’s,
Lopes et al. [8] suggested to improve the Lee’s and Frost’s filters by classifying the pixels in order to apply specific processing
to the different classes. Based on this idea, the so-called Adaptive Speckle Reduction filter (ASR) exploits local image statistics
to determine specific areas to be processed further. In [9], the kernel of the adaptive filter is fitted to homogeneous regions
according to local image statistics. Analyzing local homogeneous regions was also investigated in [10], [11] to spatially adapt
the filter parameters. Note that the Median filter has been also examined for speckle reduction in [4]. Very recently, a stochastic
approach to ultrasound despeckling (SBF) has been developed in [12], [13]. This local averaging method removes the local
extrema assumed to be outliers in a robust statistical estimation framework. Finally, the Rayleigh-Maximum-Likelihood (R-ML)
filter has been derived with similar methodological tools in [14].
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B. Partial Differential Equations (PDE) -based approaches

Adapted formulations of the Anisotropic Diffusion filter (AD) [15] and the Total Variation minimization scheme (TV) [16]
have been developed for US imaging. In [17], [18], the Speckle Reducing Anisotropic Diffusion (SRAD) was introduced
and involves a noise-dependent instantaneous coefficient of variation. In [19] the Nonlinear Coherent Diffusion (NCD) filter
is based on the assumption that the multiplicative speckle in US signals is transformed into an additive Gaussian noise in
Log-compressed images. Recently, the Oriented SRAD (OSRAD) filter has been proposed in [20]; this filter takes into account
the local directional variance of the image intensity, i.e., the local image geometry. Finally, the TV minimization scheme has
been adapted to ultrasound imaging in [21], [22]. Unlike the previous adaptive speckle filters, all the considered PDE-based
approaches are iterative and produce smooth images while preserving edges. Nevertheless, meaningful structural details are
unfortunately removed during iterations.

C. Multiscale methods

Several conventional wavelet thresholding methods [23]–[25] have also been investigated for speckle reduction [26]–[28]
with the assumption that the logarithm compression of US images transforms the speckle into an additive Gaussian noise. In
order to relax this restrictive assumption, Pizurica et al. [29] proposed a wavelet-based Generalized Likelihood ratio formulation
and imposed no prior on noise and signal statistics. In [30]–[33], the Bayesian framework was also explored to perform wavelet
thresholding adapted to the non-Gaussian statistics of the signal. Note that other multiscale strategies have been also studied in
[34]–[36] to improve the performance of the AD filter; in [37], the Kuan’s filter is applied to interscale layers of a Laplacian
pyramid.

D. Hybrid approaches

The aforementioned approaches can be also combined in order to take advantage of the different paradigms. In [38], the
image is preprocessed by an adaptive filter in order to decompose the image into two components. A Donoho’s soft thresholding
method is then performed on each component. Finally, the two processed components are combined to reduce speckle. PDE-
based approaches and a wavelet transform have been also combined as proposed in [39].

III. METHOD

The previously mentioned approaches for speckle reduction are based on the so-called locally adaptive recovery paradigm [40].
Nevertheless, more recently, a new patch-based non local recovery paradigm has been proposed by Buades et al [1]. This new
paradigm proposes to replace the local comparison of pixels by the non local comparison of patches. Unlike the aforementioned
methods, the so-called NL-means filter does not make any assumptions about the location of the most relevant pixels used to
denoise the current pixel. The weight assigned to a pixel in the restoration of the current pixel does not depend on the distance
between them (neither in terms of spatial distance nor in terms of intensity distance). The local model of the signal is revised
and the authors consider only information redundancy in the image. Instead of comparing the intensity of the pixels, which
may be highly corrupted by noise, the NL-means filter analyzes the patterns around the pixels. Basically, image patches are
compared for selecting the relevant features useful for noise reduction. This strategy leads to competitive results when compared
to most of the state-of-the-art methods [3], [41]–[46]. Nevertheless, the main drawback of this filter is its computational burden.
In order to overcome this problem, we have recently proposed a fast and optimized implementation of the NL-means filter for
3D Magnetic Resonance (MR) images [46].

In this section, we rather revise the traditional formulation of the NL-means filter, suited to the additive white Gaussian
noise model, and adapt this filter to spatial speckle patterns. Accordingly, a dedicated noise model used for US images is first
considered. A Bayesian formulation of the NL-means filter [3] is then used to derive a new speckle filter.

A. The Non Local means Filter

Let us consider a gray-scale noisy image u = (u(xi))xi∈Ωdim defined over a bounded domain Ωdim ⊂ Rdim, (which is
usually a rectangle of size |Ωdim|) and u(xi) ∈ R+ is the noisy observed intensity at pixel xi ∈ Ωdim. In the following, dim
denotes the image grid dimension (dim = 2 or dim = 3 respectively for 2D and 3D images). We also use the notations given
below:

Original pixelwise NL-means approach:
∆i : square search volume centered at pixel xi of size |∆i| = (2M + 1)dim, M ∈ N;
Ni : square local neighborhood of xi of size |Ni| = (2d + 1)dim, d ∈ N;

u(Ni) : vector (u(1)(Ni), ..., u(|Ni|)(Ni))T gathering the intensity values of Ni;
• v(xi) : true intensity value at pixel xi ∈ Ωdim;

NL(u)(xi) : restored value of pixel xi;
w(xi, xj) : weight used for restoring u(xi) given u(xj) and based on the similarity of patches u(Ni) and u(Nj).
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Fig. 1. Pixelwise NL-means filter (d = 1 and M = 8). The restored value at pixel xi (in red) is the weighted average of all intensity values of pixels xj

in the search volume ∆i. The weights are based on the similarity of the intensity neighborhoods (patches) u(Ni) and u(Nj).

Blockwise NL-means approach:
Bi : square block centered at xi of size |Bi| = (2α + 1)dim, α ∈ N;

• v(Bi) : unobserved vector of true values of block Bi;
u(Bi) : vector gathering the intensity values of block Bi;

NL(u)(Bi) : restored block of pixel xi;
w(Bi, Bj) : weight used for restoring u(Bi) given u(Bj) and based on the similarity of blocks u(Bi) and u(Bj).

Finally, the blocks Bik
are centered on pixels xik

with ik = (k1n, ..., kdimn), (k1, ..., kdim) ∈ Ndim and n represents the
distance between block centers.

1) Pixelwise approach: In the original NL-means filter [1], the restored intensity NL(u)(xi) of pixel xi, is the weighted
average of all the pixel intensities u(xi) in the image Ωdim:

NL(u)(xi) =
∑

xj∈Ωdim

w(xi, xj)u(xj) (1)

where w(xi, xj) is the weight assigned to value u(xj) for restoring the pixel xi. More precisely, the weight evaluates the
similarity between the intensities of the local neighborhoods (patches) Ni and Nj centered on pixels xi and xj , such that
w(xi, xj) ∈ [0, 1] and

∑
xj∈Ωdim w(xi, xj) = 1 (see Fig. 1). The size of the local neighborhood Ni and Nj is (2d + 1)dim.

The traditional definition of the NL-means filter considers that the intensity of each pixel can be linked to pixel intensities of
the whole image. For practical and computational reasons, the number of pixels taken into account in the weighted average is
restricted to a neighborhood, that is a “search volume” ∆i of size (2M+1)dim, centered at the current pixel xi.

For each pixel xj in ∆i, the Gaussian-weighted Euclidean distance ‖.‖22,a is computed between the two image patches
u(Nj) and u(Ni) as explained in [1]. This distance is the traditional L2-norm convolved with a Gaussian kernel of standard
deviation a. The standard deviation of the Gaussian kernel is used to assign spatial weights to the patch elements. The central
pixels in the patch contribute more to the distance than the pixels located at the periphery. The weights w(xi, xj) are then
computed as follows:

w(xi, xj) =
1
Zi

exp−
‖u(Ni)− u(Nj)‖22,a

h2
(2)

where Zi is a normalization constant ensuring that
∑

xj∈Ωdim w(xi, xj) = 1, and h acts as a filtering parameter controlling
the decay of the exponential function.

2) Blockwise approach: As presented in [46], a blockwise implementation of the proposed NL-means-based speckle filter
is able to decrease the computational burden. The blockwise approach consists of: i) dividing the volume into blocks with
overlapping supports; ii) performing a NL-means-like restoration of these blocks; iii)) restoring the pixel intensities from the
restored blocks. Here, we describe briefly these three steps and refer the reader to [46] for additional detailed explanations:

i) a partition of the volume Ωdim into overlapping blocks Bik
containing P = (2α + 1)dim elements is performed, i.e.

Ωdim =
⋃

k Bik
. These blocks are centered on pixels xik

which constitute a subset of Ωdim. The pixels xik
are equally

distributed at positions ik = (k1n, k2n, k3n), (k1, k2, k3) ∈ Ndim where n represents the distance between the centers of
Bik

;
ii) a block Bik

is restored as follows:

NL(u)(Bik
) =

∑
Bj∈∆ik

w(Bik
, Bj)u(Bj) with w(Bik

, Bj) =
1

Zik

exp−‖u(Bik
)− u(Bj)‖22
h2

(3)
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Fig. 2. Blockwise NL-means Filter (n = 2, α = 1 and L = 4). For each block Bik
centered at pixel xik

, a NL-means-like restoration is performed from
blocks Bj . The restored value of the block Bik

is the weighted average of all the blocks Bj in the search volume. For a pixel xi included in several blocks,
several estimates are obtained and fused. The restored value of pixel xi is the average of the different estimations stored in vector Ai.

where u(Bi) = (u(1)(Bi), ..., u(P )(Bi))T is an image patch gathering the intensities of the block Bi, Zik
is a normal-

ization constant ensuring
∑

Bj∈∆ik
w(Bik

, Bj) = 1 and

‖u(Bik
)− u(Bj)‖22 =

P∑
p=1

(u(p)(Bi)− u(p)(Bj))2; (4)

iii) for a pixel xi included in several blocks Bik
, several estimates of the same pixel xi from different NL(u)(Bik

) are
computed and stored in a vector Ai of size L (see Fig 2). We denote Ai(l) the lth element of vector Ai. The final
restored intensity of pixel xi is the mean of the restored values NL(u)(Bik

).
The main advantage of this approach is to significantly reduce the complexity of the algorithm. Indeed, for a volume Ωdim

of size |Ωdim|, the global complexity is O((2α + 1)dim(2M + 1)dim(N
n )dim). For instance, if we set n = 2, the complexity

is divided by a factor of 4 in 2D and 8 in 3D.

B. The NL Means-based Speckle Filter

1) Bayesian formulation: In [3], a Bayesian formulation of the NL-means filter was proposed. Equivalent to the conditional
mean estimator, it has been shown that an empirical estimator v̂(Bik

) of a block Bik
can be defined as (see the appendix):

v̂(Bik
) =

1
|∆ik

|

|∆ik
|∑

j=1

v(Bj)p(u(Bik
)|v(Bj))

1
|∆ik

|

|∆ik
|∑

j=1

p(u(Bik
)|v(Bj))

(5)

where p(u(Bik
)|v(Bj)) denotes the probability density function (pdf) of u(Bik

) given the noise free and unknown patches
v(Bj). Since v(Bj) is unknown, an estimator is classically computed by substituting u(Bj) for v(Bj). Hence, we get

v̂(Bik
) =

|∆ik
|∑

j=1

u(Bj)p(u(Bik
)|u(Bj))

|∆ik
|∑

j=1

p(u(Bik
)|u(Bj))

(6)

where p(u(Bik
)|u(Bj)) denotes the pdf of u(Bik

) conditionally to u(Bj). In the case of an additive white Gaussian noise,

the likelihood p(u(Bik
)|u(Bj)) will be proportional to e−

||u(Bik
)−u(Bj)||22
h2 , and the corresponding Bayesian estimator v̂(Bik

)
is then similar to the initial NL-means method (see (3)).

In what follows, this general Bayesian formulation is used to derive an adapted filter to a dedicated ultrasound noise model.
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2) Noise models for log-compressed US images: The relevant noise pdfs useful for US image denoising cannot be easily
exhibited. Basically, we should consider the complex image formation process, i.e.: i) local correlation due to periodic
arrangements of scatterers [17] and finite beamwidth; ii) envelope detection and logarithm amplification of radio-frequency
signals performed on the display image [19]; iii) additive Gaussian noise of sensors [19]; iv) additive Gaussian noise introduced
by the acquisition card. All these factors tend to prove that the Rayleigh model used for RF signals is not suitable for analyzing
US Log-compressed images. Usually, in the wavelet denoising domain [19], [26], [27], multiplicative speckle noise is supposed
to be transformed into an additive Gaussian noise by the logarithmic compression. However, recent studies related to US images
demonstrate also that the distribution of noise is satisfyingly approximated by a Gamma distribution [47] or a Fisher-Tippett
distribution [48].

Consequently, we have decided to choose the following general speckle model:

u(x) = v(x) + vγ(x)η(x) (7)

where v(x) is the original image, u(x) is the observed image, η(x) v N (0, σ2) is a zero-mean Gaussian noise. This model
is more flexible and less restrictive than the usual RF model and is able to capture reliably image statistics since the factor γ
depends on ultrasound devices and additional processing related to image formation.

Contrary to additive white Gaussian noise model, the noise component in (7) is image-dependent. In [4], based on the
experimental estimation of the mean versus the standard deviation in Log-compressed images, Loupas et al. have shown that
γ = 0.5 model fits better to data than the multiplicative model or the Rayleigh model. Since, this model has been used
successfully in many studies [38], [49]–[51]. Clearly, this model is relevant since it is confirmed that the speckle is higher in
regions of high intensities versus regions of low intensities [47], [49].

3) A new statistical distance for patch comparison: the Pearson distance: Based on the Bayesian formulation (see (6)), we
introduce a new distance to compare image patches if we consider the noise model (7). For each pixel we assume:

u(x)|v(x) v N (v(x), v(x)2γσ2) (8)

which yields

p(u(x)|v(x)) ∝ exp− (u(x)− v(x))2

2v(x)2γσ2
. (9)

Given a block Bi, the likelihood can be factorized as (conditional independence hypothesis):

p(u(Bi)|u(Bj)) =
P∏

p=1

p(u(p)(xi)|u(p)(xj))

∝ exp−
P∑

p=1

(u(p)(xi)− u(p)(xj))2

2(u(p))2γ(xj)σ2
.

(10)

Accordingly, the so-called Pearson distance defined as

dP (u(Bi),u(Bj)) =
P∑

p=1

(u(p)(Bi)− u(p)(Bj))2

(u(p))2γ(Bj)
(11)

is substituted to the usual L2-norm (see (4)). In the reminder of the paper, γ = 0.5 is considered in the proposed filter.
A pixel selection scheme similar to [46] based on tests on the mean will be used to select the most relevant patches. This

selection is controlled by the thresholding µ1 as previously described in [46]. As a result, the denoising results are improved
and the algorithm is faster. In addition, a parallel implementation is used in all experiments to speed up the algorithm.

IV. SYNTHETIC IMAGES EXPERIMENTS

In this section, we propose to compare different filters with experiments on synthetic data, with different noise models,
image data and quality criteria. Two simulated data are described in this section:

• in section IV-A, a 2D phantom and a noise model available in MATLAB are considered for the experiments, and the
signal-to-noise Ratio (SNR) is used to compare objectively several methods;

• in section IV-B, the realistic speckle simulation proposed in Field II is performed and the ultrasound despeckling assessment
index (Q̃) proposed in [12], [13] is chosen for objective comparisons;
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Filter iteration number smoothing parameter threshold patch size
σ = {0.2; 0.4; 0.8} σ = {0.2; 0.4; 0.8}

Lee’s filter - - - 2× 2
Kuan’s filter - - - 2× 2

SBF {5; 8; 30} - - 3× 3
SRAD {500; 1000; 2000} dt = {0.1; 0.2; 0.1} - -

NL-means - h = {20.0; 25.0; 30.0} - 5× 5
OBNLM - h = {12.0; 14.0; 16.0} µ1 = 0.9 5× 5

TABLE I
OPTIMAL SET OF PARAMETERS USED FOR THE MATLAB “PHANTOM” EXPERIMENT. FOR THE NL-means BASED FILTERS, WE SET n = 2 AND

|∆ik
| = 11× 11.

A. 2D phantom corrupted by the theoretical (MATLAB) noise model

1) Speckle model and quality criterion: In this experiment, the synthetic image “Phantom” (see Fig. 3), available in MATLAB,
was corrupted with different levels of noise. The “Phantom” image is a 32 bit image of 256× 256 pixels. First, an offset of
0.5 was added to the image (to avoid naught areas) before performing a multiplication of intensities by a factor 20. Then, the
MATLAB speckle simulation based on the following image model

u(xi) = v(xi) + v(xi)ν(xi), ν(xi) v N (0, σ2) (12)

was applied to the “Phantom” image. Three levels of noise were tested by setting σ = {0.2; 0.4; 0.8}. To assess denoising
methods, the SNR values [52] were computed between the “ground truth” and the denoised images :

SNR = 10 log10

∑
xi∈Ω2(v(xi)2 + v̂(xi)2)∑
xi∈Ω2(v(xi)− v̂(xi))2

(13)

where v(xi) is the true value of pixel xi and v̂(xi) the restored intensity of pixel xi.
2) Compared methods: In this experiment, we compared several speckle filters and the parameters were adjusted to get the

best SNR values:
• Lee’s filter (2D MATLAB implementation) [5]
• Kuan’s filter (2D MATLAB implementation) [7]
• SBF filter (2D MATLAB implementation provided by the authors) [12]
• Speckle Reducing Anisotropic Diffusion (SRAD) (MATLAB implementation of Virginia University1) [17]
• blockwise implementation of the classical NL-means filter [1]
• blockwise implementation of the proposed method denoted as Optimized Bayesian NL-means with block selection

(OBNLM).
In this experiment, we have chosen to compare our method with well-known adaptive filters, such as the Lee’s and Kuan’s

filters, and with two competitive state-of-the-art methods: SRAD and SBF filters. We limited the comparison to this set of
methods but the results produced by other recent filters could be also analyzed further (e.g. see [14]). Moreover, the usual
NL-means filter has been applied to the same images in order to quantitatively evaluate the performance of our speckle-based
NL-means filter. For each method and for each noise level, the optimal filter parameters were searched within large ranges.
These parameters are given in Table I.

3) Results: Table II gives the SNR values obtained for each method. The denoised images corresponding to σ = 0.4 are
presented in Fig. 3. For all levels of noise, the OBNLM filter obtained the best SNR value. For this experiment, the use of
the Pearson distance combined with block selection enabled to improve the denoising performances of the NL-means filter
for images corrupted by signal-dependent noise. Visually, the NL-means based filter satisfyingly removed the speckle while
preserving meaningful edges.

B. Field II simulation

1) Speckle model and quality assessment: In order to evaluate the denoising filters with a more relevant and challenging
simulation of speckle noise, the validation framework proposed in [12], [13] was used. This framework is based on Field II
simulation [53]. The “Cyst” phantom is composed of 3 constant classes Cr presented in Fig. 4. The result of the Field II
simulation is converted into an 8 bit image of size 390× 500 pixels. Since the geometry of the image is known, but not the
true value of the image (i.e. without speckle), the authors introduced the ultrasound despeckling assessment index (Q̃) defined
as:

1http://viva.ee.virginia.edu/downloads.html
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SNR (dB)
Filter σ = 0.2 σ = 0.4 σ = 0.8
Noisy phantom 39.32 25.96 14.11
Lee’s filter 49.41 42.71 32.31
Kuan’s filter 49.43 42.71 32.33
SBF 49.61 43.86 38.04
SRAD 57.17 44.07 33.29
NL-means 62.15 47.92 38.72
OBNLM 64.13 53.12 42.13

TABLE II
SNR VALUES OBTAINED WITH SEVERAL FILTERS APPLIED TO THE 2D MATLAB “PHANTOM” IMAGE.

Filter iteration number smoothing parameter threshold patch size
SBF 400 - - 5× 5

SRAD 500 dt = 0.05 - -
NL-means - h = 50 - 11× 11
OBNLM - h = 50 µ1 = 0.75 11× 11

TABLE III
OPTIMAL SET OF PARAMETERS USED FOR VALIDATION ON THE 2D SYNTHETIC DATA SIMULATED WITH FIELD II. FOR THE NL-means-BASED FILTERS

n = 4 AND |∆ik
| = 33× 33.

Q =

∑
r 6=l(µCr

− µCl
)2∑

r σ2
Cr

(14)

to evaluate the performance of denoising filters for this simulation. We denote µCr as the mean and σ2
Cr

as the variance of
class Cr after denoising. To avoid the sensitivity to image resolution, Q is normalized by Qid. The new index Q̃ = Q/Qid

is high if the applied filter is able to produce a new image with well separated classes and small variances for each class.
According to [12], [13], an image is satisfyingly denoised if Q̃ is high enough.

2) Method Comparison: For this experiment, we compared the SBF filter, SRAD filter, NL-means filter and the proposed
OBNLM filter. The filter parameters are given in Table III. Compared to the previous experiment, the patch size by using the
NL-means-based filters is increased. Indeed, the patch size reflects the scale of the “noise” compared to the image resolution.
In the previous experiment, the resolution of the added noise was about one pixel. In this experiment, the objects to be removed
are composed of several pixels, thus the patch size is increased to evaluate the restoration performance of each object.

3) Results: The denoised images and the quantitative results are given in Fig. 4. In this evaluation framework, the OBNLM
filter produced the highest Q̃ index. Similar values than those presented in [12], [13] were found for the SRAD and SBF filters.
Compared to the original NL-means filter, the proposed adaptations for US images improved the Q̃ index of the denoised image.

V. EXPERIMENTS ON REAL DATA

In this section, a visual comparison of 2D intraoperative ultrasound brain images (Section V-A) and a visual inspection of
3D ultrasound image of a liver (Section V-B) are proposed.

A. Intraoperative ultrasound brain images
In this paragraph, we propose a visual comparison of the SBF and SRAD filters and the OBNLM method on real intraoperative

brain images. The parameters for the SBF and SRAD filters are the parameters given respectively in [17] and [12]. The
parameters of the OBNLM filter were set as follows : h = 8, n = 2, α = 3, M = 6 and µ1 = 0.6.

Figure 5 shows the denoising results. Visually, the OBNLM filter efficiently removes the speckle component while enhancing
the edges and preserving the image structures. The visual results produced on real image by our method are competitive
compared to SRAD and SBF filters.

B. Experiments on a 3D liver image
In this section, result of the proposed filter on 3D US image is proposed. These data are freely available on Cambridge

University website2. The B-scans were acquired with a Lynx ultrasound unit (BK Medical System) and tracked by the magnetic
tracking system miniBIRD (Ascension Technology). The reconstruction of the volume was performed with the method described
in [54]. The reconstructed volume size was 308× 278× 218 voxels with an isotropic resolution of 0.5× 0.5× 0.5 mm3.

The denoising results obtained with the OBNLM method on the liver volume are shown in Fig. 6. As for the previous
experiment on 2D US brain images, the visual results on this 3D dataset show edge preservation and efficient noise removal
produced by our filter.

2http://mi.eng.cam.ac.uk/milab.html
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Phantom Noisy Phantom

Lee Kuan

SBF SRAD

NL-means OBNLM

Fig. 3. Results obtained with different filters applied to the “Phantom” image corrupted with signal-dependent noise (σ = 0.4). The quantitative evaluation,
measured using the signal-to-noise ratio, is presented in Table II.

Figure 7 shows zooming views of hepatic vessels. The edge preservation of the OBNLM filter is visible on the removed
noise image that does not contain structures. Moreover, the difference in dark areas (hepatic vessels) and gray areas (hepatic
tissues) shows the smoothing adaptation according to the signal intensity. The noise in brighter areas is drastically reduced.

VI. CONCLUSION

In this paper, we proposed a Non Local (NL)-means-based filter for ultrasound images by introducing the Pearson distance
as a relevant criterion for patch comparison. Experiments were carried out on synthetic images with different simulations of
speckle. During the experiments, quantitative measures were used to compare several denoising filters. Experiments showed
that the Optimized Bayesian Non Local Means (OBNLM) filter proposes competitive performances compared to other state-
of-the-art methods. Moreover, as assessed by quantitative results, our adaptation of classical NL-means filter to speckle noise
proposes a filter more suitable for US imaging. Experiments on real ultrasound data were conducted and showed that the
OBNLM method is very efficient at smoothing homogeneous areas while preserving edges. Further work will be pursued on
the automatic tuning of the OBNLM filter and on the influence study on post-processing tasks such as image registration or
image segmentation.
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Cyst Field II simulation

SRAD Q̃ = 2.11 SBF Q̃ = 2.27

NL-means Q̃ = 1.95 OBNLM Q̃ = 2.71

Fig. 4. Denoised images obtained with the compared filters for the Field II experiment and the corresponding Q̃ indexes.

APPENDIX

Details of the Bayesian NL-means filter

The following Bayesian definition of the NL-means filter is presented in [3]. By considering the quadratic loss function, the
optimal Bayesian estimator of a noise-free patch v̂opt(B) can be written as:

v̂opt(B) = argmin
v(B)

∑
v(B)

||v(B)− v̂(B)||2p(v(B)|u(B)) =
∑
v(B)

v(B)p(v(B)|u(B)) (15)

where p(v(B)|u(B)) denotes the probability density function (pdf) of v(B) conditionally to u(B), u(B) is the observed
intensity and v(B) is the true intensity of block B. According to the Bayes’ and marginalization rules, the so-called conditional
mean estimator can be rewritten as (see [3]) :

v̂opt(B) =
∑
v(B)

v(B)
p(v(B)|u(B))

p(u(B))
=

∑
v(B) v(B)p(u(B)|v(B))p(v(B))∑

v(B) p(u(B)|v(B))p(v(B))
(16)
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where p(u(B)|v(B)) denotes the distribution of u(B) conditionally to v(B). Since p(u(B)|v(B)) and p(u(v)) cannot be
estimated from only one realization of the image, these pdfs are estimated from observations (blocks Bj) taken in a search
window ∆i of a block Bi. According to [3], [55], the following approximations can be written:

1
|∆i|

|∆i|∑
j=1

v(Bj)p(u(Bi)|v(Bj))
P−→

∑
v(B) v(B)p(u(B)|v(B))p(v(B)) (17)

1
|∆i|

|∆i|∑
j=1

p(u(Bi)|v(Bj))
P−→

∑
v(B) p(u(B)|v(B))p(v(B)), (18)

If we assume the prior distribution p(v(B)) uniform. This leads to the empirical Bayesian estimator v̂(Bik
) uses in (5):

v̂(Bi) =

1
|∆i|

|∆i|∑
j=1

v(Bj)p(u(Bi)|v(Bj))

1
|∆i|

|∆i|∑
j=1

p(u(Bi)|v(Bj))

. (19)

We refer the reader to [3] for detailed explanations.
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Original SRAD SBF OBNLM

Original SRAD SBF OBNLM
Fig. 5. Results obtained with the SRAD and SBF filters and the proposed filters on real intraoperative brain images. The OBNLM filter efficiently removes
the speckle while enhancing the edges and preserving the image structures.
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Fig. 6. Top: 3D volume of the liver. Bottom: the denoising result obtained with the OBNLM filter with h = 8, n = 2, α = 1, M = 5 and µ1 = 0.6.

Fig. 7. From left to right: the original “noisy” volume, the denoising result obtained with the OBNLM filter with h = 8 and µ1 = 0.6 and the removed
noise component. The edge preservation of the OBNLM is visually appreciated by inspecting the removed noise component which contains few structures.
Moreover, the level of noise estimated for the dark areas (hepatic vessels) and the gray areas (hepatic tissues) demonstrates the relevance of the signal-dependent
modeling.
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