Positron Emission Tomography: Basics of Data Acquisition and Image Reconstruction

Andrew J. Reader, PhD
Montreal Neurological Institute
McGill University

Overview of Seminar

- Overview of Positron Emission Tomography (PET)
- PET data acquisition types
- The system matrix
- Image reconstruction
Overview of PET

- Choose a molecule of interest
- Radioactively label the molecule
- Inject a trace amount of this radioactive compound (the PET radiotracer)
- Place the radioactive subject into the PET scanner
- Detect the radiation
- Reconstruct the Image
- Measure functional information from the reconstruction of the space-time distribution of the PET radiotracer

Wikipedia inspired!

1. Injection of radiotracer
2. a) Positron (e⁺) emission, b) Annihilation with electron (e⁻) and c) 511 keV photon (γ) pair emission
3. Detection of photon pair
4. Acquisition of 100s of millions of such pairs
5. Reconstruction of data
PET at the Montreal Neurological Institute

PET scanners

<table>
<thead>
<tr>
<th></th>
<th>HR+</th>
<th>HRRT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crystals used</td>
<td>BGO (4x72x8x8=18432)</td>
<td>LSO/LYSO (8x117x8x8x2=59904x2)</td>
</tr>
<tr>
<td>Crystal size</td>
<td>4 mm x 4 mm x 30 mm</td>
<td>2.1 mm x 2.1 mm x 20 mm</td>
</tr>
<tr>
<td>Number of LORs</td>
<td>~20 million</td>
<td>>4.5 billion</td>
</tr>
<tr>
<td>Spatial resolution</td>
<td>4 – 8.3 mm FWHM</td>
<td>2 - 3.5 mm FWHM</td>
</tr>
<tr>
<td>Sensitivity</td>
<td>21.9 kcps/kBq/mL</td>
<td>39.8 kcps/kBq/mL</td>
</tr>
<tr>
<td>Field of view</td>
<td>155 mm axial (56 cm port)</td>
<td>250 mm axial (31 cm port)</td>
</tr>
</tbody>
</table>
PET at the Montreal Neurological Institute

<table>
<thead>
<tr>
<th>Measured quantity & radiotracer</th>
<th>Stress, schizophrenia</th>
<th>Addiction</th>
<th>Depression</th>
<th>Alzheimer’s disease</th>
<th>Stroke recovery</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dopamine release [15C] Raclopride</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dopamine release [18F] Fallypride</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Serotonin receptor density [18F] MPPF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glutamate receptor density [11C] ABP688</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glucose metabolic rate [18F] FDG</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cortical thickness [18F] Flumazenil</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Example studies

Measured quantity & radiotracer
- Dopamine release [15C] Raclopride
- Dopamine release [18F] Fallypride
- Serotonin receptor density [18F] MPPF
- Glutamate receptor density [11C] ABP688
- Glucose metabolic rate [18F] FDG
- Cortical thickness [18F] Flumazenil

Functional parameters of interest
- BP
- BP
- BP
- BP and K_i
- BP

Example coronal section

Positron Emission (β+ decay)

Atoms with too few neutrons can be unstable

Stability can be achieved by:
- proton \rightarrow neutron + positron + neutrino

$$E = mc^2$$

2.998×10^8 ms$^{-1}$

9.109 x 10$^{-31}$ kg

511 keV

E.g. Carbon 11

Positron $+ \rightarrow$ Electron + Neutrino

γ Photon

9.109 x 10$^{-31}$ kg

511 keV

γ Photon

γ Photon
The raw data: events detected along lines of response (LORs)
e.g. 500 million events
[position, time, energy]

PET scanner detector ring

What is the object which gave rise to the data?

? OBJECT ?

(256 x 256 x 250 x 20)
>300 million parameters
How then do we make images?

The following is a list of “ingredients” for image reconstruction:

- The PET scanner collects **measured data** (counts detected outside the patient).
- But we seek to estimate **parameters** which are not directly measured by the PET scanner.
- A **model** of the imaging process is needed to provide an estimate of the mean of the measured data (given a current estimate of the parameters).
- These parameters and their expected data should agree in some way with the measured data (e.g. least squares, maximum likelihood) – the **objective**.
- An **algorithm** is needed to estimate the parameters, so that the objective is achieved.
- So we need: **data**, **parameters**, **model**, **objective** and an **algorithm**!

THE DATA

Understanding the acquired PET data

- PET data can be acquired / represented in 2 main ways
- **SINOGRAMS** (projections)
- **LIST-MODE DATA**
- ...also, **BACKPROJECTED IMAGES**
THE DATA

PET Measured Data 1

Point Source

$n(x, y)$

3 data formats

List-mode data

$D1, D2, E_1, E_2, t, ...$

Backprojected image

Sinogram

PET Measured Data 2

Point Source

List-mode data

$D1, D2, E_1, E_2, t, ...$

$D3, D4, E_1, E_2, t, ...$

Backprojected image

Sinogram
PET Measured Data 3

Point Source
- 3^{rd} positron emission, and annihilation photons

List-mode data
- $D_1, D_2, E_1, E_2, t, ...$
- $D_3, D_4, E_1, E_2, t, ...$
- $D_5, D_6, E_1, E_2, t, ...$

Backprojected image

Sinogram

PET Measured Data (AFTER 6 EMISSIONS)

Point Source
- Site of 6^{th} emission, and annihilation photons

List-mode data
- $D_1, D_2, E_1, E_2, t, ...$
- $D_3, D_4, E_1, E_2, t, ...$
- $D_5, D_6, E_1, E_2, t, ...$
- $D_7, D_8, E_1, E_2, t, ...$
- $D_9, D_{10}, E_1, E_2, t, ...$
- $D_{11}, D_{12}, E_1, E_2, t, ...$
THE DATA

PET Measured Data (after ~1000 emissions)

Point Source

Many events will occur along any given line through the point source.

The number of events detected along this line (LOR) ≥ sum of activity along a line through the FOV.

List-mode data

- $D_1, D_2, E_p, E_2, t, ...$
- $D_3, D_4, E_p, E_2, t, ...$
- $D_5, D_6, E_p, E_2, t, ...$
- $D_7, D_8, E_p, E_2, t, ...$
- $D_9, D_{10}, E_p, E_2, t, ...$
- $D_{11}, D_{12}, E_p, E_2, t, ...$
- $D_{13}, D_{14}, E_p, E_2, t, ...$
- $D_{15}, D_{16}, E_p, E_2, t, ...$
- $D_{17}, D_{18}, E_p, E_2, t, ...$

Backprojected image

Sinogram

THE DATA

PET Measured Data: Multiple Points (5k events)

Multiple Point Sources

Sites of positron emission, and annihilation photons.

Note that the simple model of CONVOLUTION can be used: each point source is replaced by a point spread function (valid for 2D PET).

List-mode data

- $D_1, D_2, E_p, E_2, t, ...$
- $D_3, D_4, E_p, E_2, t, ...$
- $D_5, D_6, E_p, E_2, t, ...$
- $D_7, D_8, E_p, E_2, t, ...$
- $D_9, D_{10}, E_p, E_2, t, ...$
- $D_{11}, D_{12}, E_p, E_2, t, ...$
- $D_{13}, D_{14}, E_p, E_2, t, ...$
- $D_{15}, D_{16}, E_p, E_2, t, ...$
- $D_{17}, D_{18}, E_p, E_2, t, ...$

Backprojected image

Sinogram
The backproject then filter (BPF) method (e.g. [1] Chu & Tam 1977) (same mathematical principles as filtered backprojection (FBP))

\[g(\mathbf{r}) = \int n(\mathbf{r'})h(\mathbf{r} - \mathbf{r'})d\mathbf{r'} \]

\[G(\mathbf{k}) = N(\mathbf{k})H(\mathbf{k}) \]

\[N(\mathbf{k}) = \frac{G(\mathbf{k})}{H(\mathbf{k})} \]

PROBLEM: Only works for shift-invariant PSF \(H \)

THE DATA

PET Measured Data: test phantom (60k events)

TRUE Sites of positron emission, and annihilation photons

List-mode data

\[D1, D2, E_p, E_\gamma, t, \ldots \]
\[D3, D4, E_p, E_\gamma, t, \ldots \]
\[D5, D6, E_p, E_\gamma, t, \ldots \]
\[D7, D8, E_p, E_\gamma, t, \ldots \]
\[D9, D10, E_p, E_\gamma, t, \ldots \]
\[D11, D12, E_p, E_\gamma, t, \ldots \]
\[D13, D14, E_p, E_\gamma, t, \ldots \]
\[D15, D16, E_p, E_\gamma, t, \ldots \]
\[D17, D18, E_p, E_\gamma, t, \ldots \]

Backprojected image

Sinogram
PET Measured Data: a brain (100k events)

TRUE Sites of positron emission, and annihilation photons

List-mode data
- $D_1, D_2, E_p, E_2, t, ...$
- $D_3, D_4, E_p, E_2, t, ...$
- $D_5, D_6, E_p, E_2, t, ...$
- $D_7, D_8, E_p, E_2, t, ...$
- $D_9, D_{10}, E_p, E_2, t, ...$
- $D_{11}, D_{12}, E_p, E_2, t, ...$
- $D_{13}, D_{14}, E_p, E_2, t, ...$
- $D_{15}, D_{16}, E_p, E_2, t, ...$
- $D_{17}, D_{18}, E_p, E_2, t, ...$

Backprojected image
Sinogram

Images (objects) and sinograms are VECTORS

Any object (e.g. point source)
Call this a vector n
what we want to find

Regard as a list of numbers:
- $(0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0)$
This is a VECTORS

Sinogram
Call this a vector m
what we have

Regard as a list of numbers:
- $(1,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,1,0)$
This is a VECTORS
Object representation

Reminder: the 5 ingredients of image reconstruction

- The vector of parameters n representing the object to be found, and a noisy measured data vector m
- A model which maps the vector of parameters to an expected measured data vector (system matrix A)
- An objective function: the expected data should agree with the measured data in some way
 - E.g. Least squares, Maximum Likelihood, Maximum a posteriori
- An algorithm which estimates the parameters of the object representation, to achieve the objective
 - E.g. EM (expectation maximization), FBP, PCG
- 5 ingredients: model, parameters, data, objective and the algorithm
From object to sinogram: the system matrix

We need to model the measurement process to do a reconstruction

\[A \]

How do we create this matrix?

Creating the system matrix:

populate columns with sinograms from point source data

\[A = \]

Hence the system matrix contains columns which are the responses to point sources at different positions in the FOV

...via an analytic model, or Monte Carlo simulation, or just measuring a point source!
Creating the system matrix:
Alternative method: fill the rows with images

\[
A = \begin{bmatrix}
0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\end{bmatrix}
\]

etc

For Time of Flight:
use a Gaussian PDF along the line

Often, these elements are calculated “on the fly” using ray-tracing (e.g. Siddon method [6]), or symmetry is exploited in the case of sinogram data.

Hence the system matrix contains rows which indicate which pixels / voxels contribute to each measurement (list-mode event or sinogram bin).

Model Summary

Each row of \(A \) corresponds to a sensitivity image for each sinogram bin.

\[
\{ a_{ij} \} = A = \ldots.
\]

Each column of \(A \) corresponds to a sinogram response for each pixel in the object.
THE MODEL

What the system matrix can contain

- Model the entire measurement process!
- Convenient to factorize (e.g. [6] Mumcuoglu et al 1994)
- Include object motion \(M \) (e.g. [8] Carson et al 2003)
- Include positron range \(P \) (e.g. convolution resolution model, [9] Reader et al 2003)
- Include the main mapping (e.g. the Radon, or x-ray, transform) \(X \)
 - Could include scatter here (e.g. [5] Markiewicz)
- Include time-of-flight (TOF) information (e.g. [10] Vandenbergh et al 2006)
- Include attenuation \(L \) (e.g. [11] Hebert & Leahy 1990, “attenuation weighting” AW)
- Include detector non-uniformities (normalization) \(N \) (e.g. [12] Michel et 1999)
- Can include detector resolution / response models as well (e.g. [13] Panin et al 2006)

\[
A = DNLX_{\text{for PM}}
\]

- In general, the system matrix is a mapping from the parameters to the expected data (the mean of the data) – we are free to choose our parameters, but this choice will of course affect the model

THE MODEL

Applying the system matrix (when \(A = X \) only)

case 1: central point source
Applying the system matrix (when $A=X$ only)
case 2: off centre point source

Applying the system matrix (when $A=X$ only)
case 3: multiple point sources
Applying the system matrix (when $A=X$ only)

case 4: general distribution

THE OBJECTIVE FUNCTION

Criteria for finding the object (n) from the data (m)

i.e. "Image Reconstruction"!

- If we do a PET (or SPECT) scan, we obtain the measured data vector m
- We can study (analytically, empirically, by simulation) our system, and create a matrix A
- We then need to find the underlying object n, which gave rise to the measured data m
- We seek
 - An estimate of n, which produces expected (mean) data $<m> = q = An$
 - We need to minimise the discrepancy between q and m
 - Many ways of defining the difference. E.g.
 - Least squares
 \[O_{LS}(m|n^k) = \sum_{i=1}^{I} (m_i - q_i^k)^2 \]
 - Maximum likelihood
 \[O_{ML}(m|n^k) = \prod_{i=1}^{I} \frac{(q_i^k)^{m_i} \exp[-q_i^k]}{m_i!} \]
Example

ML-EM algorithm

\[n^{k+1} = \frac{n^k}{A^T1} A^T \left(\frac{m}{A n^k + b} \right) \]

Current estimate of 3D image
Forward project (e.g. integrate along lines through the image)
Add scatter and randoms background (‘Ordinary Poisson’)
Compare to measured data: obtain a ratio (=correction factors)
Backproject these correction factors
Multiply (and normalise)
Obtain new estimate of 3D image

[9] Shepp & Vardi 1982
[10] Lange & Carson 1984

Example (4 iterations)
OSEM (Ordered Subsets Expectation Maximization)
(Hudson & Larkin)

- Uses a subset of the sinograms (usually just a few angles)
- Since only part (a subset) of the measured data are used for each update, the processing required per update is reduced!
- However, convergence is lost: limit cycle encountered

EXAMPLE ALGORITHM

EM and its variants

| OS-EM (not ML) |

\[
\sum_{i \in S_l} a_{ij} m_i \frac{\sum_{j} a_{ib} n_{b}^{k,l}}{\sum_{i \in S_l} a_{ij} n_{j}^{k,l+1}}
\]
Example (8 iterations, 4 subsets)

Analytic ALGORITHM

Fourier Reconstruction (PET, SPECT, CT)

\[N(\omega_x, \omega_y) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} n(l,s) \exp[-i\omega_x l - i\omega_y s] \, dl \, ds \]

\[M(\omega_x) = \int_{-\infty}^{\infty} n(l,s) \exp[-i\omega_x s] \, ds \]

- Normalize for varying contributions

 \(\frac{1}{r} \) density corrected by the ramp filter \(|r| \)
- Take inverse 2D Fourier Transform to find \(n \)
- Mathematically equivalent to: filter sinogram, then backproject (FBP)

2D FT of Image

sinogram
The central section theorem

Example ML-EM and FBP reconstructions

TRUE

Example FBP reconstruction

Iteration 100

At convergence, both points are equally visible
Example ML-EM and FBP reconstructions (2D, \(\sim 10^5\) events)

TRUE

Example FBP reconstruction

Iteration 75

Post-reconstruction smoothing

3D FBP
3D OSEM
3D OSEM+PSF

(3D, \(\sim 10^9\) events)

Raw data courtesy A. Thiel, MNI
Thank you