Magnetic Resonance Spectroscopy: Basic Principles and Selected Applications

> Sridar Narayanan, PhD Magnetic Resonance Spectroscopy Unit McConnell Brain Imaging Centre Dept. of Neurology and Neurosurgery

Montreal Neurological Institute McGill University Montreal, Canada

NMR Basics

- Nuclei with odd number of protons and/or neutrons
 - nuclear spin angular momentum ("spin")
 - nuclear magnetic moment
- Biological tissue rel. sens.
 - hydrogen (¹H)
 - phosphorus (³¹P) 6.6%
 - carbon (¹³C)

100%

- 1.6%

NMR Basics

no external field

external field B₀ (spin 1/2)

Net Magnetization (M)

static magnetic field B₀ produces a net magnetization vector M (along z-axis)
 B₀
 M
 B₀
 x

NMR Basics

• spins precess and exhibit resonance at the Larmor frequency

$\omega = \gamma \mathbf{B}$

where $\gamma =$ gyromagnetic ratio $\gamma/2\pi = 42.58$ MHz/T for hydrogen

¹HMRS Basic Principles

- ¹H nuclei resonate at a characteristic frequency dependent on the magnetic field strength B
- Within a given applied field B, ¹H nuclei in different chemical environments experience a slightly different effective field due to chemical shielding from surrounding electrons

Chemical Shielding

σ = diamagnetic screening constant

 $B = B_o (1 - \sigma)$

Joseph P. Hornak

Chemical Shielding

- Magnitude of σ depends on local electron density => chemical environment
 - Adjacent atoms
 - Bonds
- This causes the ¹H nuclei to resonate at slightly different frequencies => chemical shift

$$v = (\gamma/2\pi) B_o (1-\sigma)$$

Joseph P. Hornak

Chemical shift: Methanol

- Horizontal axis
 - Frequency (ppm)
- Vertical axis
 - Area proportional to concentration
 - T1 & T2 weighting

Hz vs. ppm

- The chemical shift when expressed in Hz is B₀ dependent
- Expressed in parts-per-million (ppm) the frequency shift is independent of B₀

$$\delta_{ppm} = (\nu - \nu_{ref}) / \nu_{ref} \ge 10^6$$

• where v_{ref} is typically the resonant frequency of tetra-methyl silane (TMS)

What is a spectrum?

- An NMR spectrum is a plot of signal intensity versus chemical shift
 - Hz field dependent
 - Parts per million (ppm)
 - Field independent

Chemical shift

Spatial localization: Single Voxel

- PRESS
 - Point RESolved Spectroscopy
- 90°-180°-180°
 - Slice selective in 3 planes
 - Acquire 2nd echo
- TE needs to be somewhat longer
 - 30ms on modern MRIs

Spatial localization: Single Voxel

- STEAM
 - STimulated Echo Acquisition Mode
- 90°-90°-90°
 - Slice selective in 3 planes
 - Trans=>long=>trans
- Shorter echo times than PRESS (~20ms)
- Half the signal
- Better localization

B_0 homogeneity: Shimming

B_0 homogeneity: Shimming

B_0 homogeneity: Shimming

MR *Imaging* H₂O: 70 M

1H-MR Spectroscopy

Metabolites: ~ 7 mM

MR *Imaging* H₂O: 70 M

1H-MR Spectroscopy

Metabolites: ~ 7 mM

Water suppression

- CHESS
 - CHEmically-Selective Saturation
- 90° pulse frequencyselective for water, followed by spoiler gradient
- Destroy the net magnetization of water protons

Example (Siemens Sonata)

PRESS, TR = 1500, TE = 135

•Eddy current compensation

•Filtering

•Zero filling

•Fourier transformation

•Frequency shift correction

•Phase correction

•Baseline correction

•Curve fitting

MRSI: Spectroscopic Imaging

Size: 1-2 cc Scan times: 10-30 min Quantitation: harder

MRSI

2D (single or multislice) 3D EPI

Long vs. short TE

Research and Clinical Applications

Observable ¹H Metabolites

ррт	Metabolite	Properties
0.9-1.4 1.3	Lipids Lactate	Products of brain destruction Product of anaerobic glycolysis
2.0 2.2-2.4	NAA Glutamine/GABA Creatine	Neuronal marker Neurotransmitters Energy metabolism
3.2 3.5	Choline myo-inositol	Cell membrane marker Glial cell marker, osmolyte
_		hormone receptor mechanisms
1.2	Ethanol Alanine	Triplet Present in meningiomas
3.4&3.8	Glucose	Increased in diabetes
3.8	Mannitol	Rx for increased ICP

MR Spectroscopy: monitoring neuronal and axonal integrity in vivo

Mechanisms of NAA decrease

Decreased density of NA

- axonal loss
- axonal shrinkage
- edema

Axonal metabolic dysfunction

(Demougeot, 2001; Dautry, 2000; Watson, 1998; Kalra, 1998; Cendes, 1997; Vermathen, 1996; Hugg, 1996; De Stefano, 1995)

Reversible NAA decreases with mitochondrial dysfunction

Early N-Acetylaspartate Depletion Is a Marker of Neuronal Dysfunction in Rats and Primates Chronically Treated with the mitochondrial Toxin 3-Nitropropionic Acid. Dautry C., et al, J Cereb Blood Flow Metab 2000;20:789-99

CHOLINE overview

Cho, PCho and GPCho
precursors of membrane components
Cho and GPCho
products of membrane degradation

membrane turnover cellular density

Inflammation

MRS: Creatine

- Creatine
 - Phosphocreatine + Creatine
- Internal standard
 - (if unaffected)

Cho

3.23.0 2.0 1.3 ppm

MRS: Lactate

LA

• Lactate

Anaerobic metabolism

 \sim

- ischemia
- inflammation
- cysts

Multiple Sclerosis

Chronic MS: Axonal damage in plaques and NAWM

Monitoring therapy with MRS

MS: / NAA/Cr with IFNB

M. Preul

Oligo, Anaplastic Oligo 22 yo male

TLE: Regions of Interest

Intermediate Medial Temporal Lobe (Mid): *head and body of hippocampus*

Posterior Medial Temporal Lobe (Post): tail of hippocampus & axonal projections

L. M. Li

Lateralization of TLE in 100 patients: Concordance with EEG-clinical findings

Neuroimaging	Abnormal Lateralizing	
AM+HF volumes:	88%	83%
Mid + Post-TL NAA/Cr:	99%	86%
MRSI + MRIVol :	100%	90%

L. M. Li

Conclusion

- MRS is a valuable tool to probe the chemical composition of the brain
- Provides metabolic information complementary to the structural information provided by MRI
- Powerful tool for research
- Can be diagnostically helpful in specific situations

Acknowledgments

- Douglas L. Arnold, MD
- G. Bruce Pike, PhD
- Nicola De Stefano
- Mark Preul, MD
- Li Li Min, MD
- Joseph P. Hornak, PhD

Questions?

