Quantifying the local tissue volume and composition in individual brains with magnetic resonance imaging

Aviv Mezer¹, Jason D Yeatman¹, Nikola Stikov², Kendrick N Kay¹, Nam-Joon Cho³,⁴, Robert F Dougherty⁵, Michael L Perry¹, Josef Parvizi⁶, Le H Hua⁶, Kim Butts-Pauly⁷ & Brian A Wandell¹,⁵

MRI Quantification of Local Tissue Volume and Composition

Nikola Stikov, PhD
January 27, 2014
Quantifying the local tissue volume and composition in individual brains with magnetic resonance imaging

Aviv Mezer1, Jason D Yeatman1, Nikola Stikov2, Kendrick N Kay1, Nam-Joon Cho3,4, Robert F Dougherty5, Michael L Perry1, Josef Parvizi6, Le H Hua6, Kim Butts-Pauly7 & Brian A Wandell1,5

Online attention

Altmetric score (what's this?)

Tweeted by 62
On 3 Facebook pages
Picked up by 2 news outlets
Blogged by 5
Reviews

This Altmetric score means that the article is:

- in the 98 percentile of a sample of 9,995 of the 72,188 tracked articles of a similar age in all journals
- in the 94 percentile (ranked 6th) of the 96 tracked articles of a similar age in Nature Medicine
• The Problem with quantitative MRI

• Calibrating qMRI Measurements

• Myelin Imaging Applications

• In vivo histology ?

• Conclusions
• The Problem with quantitative MRI

• Calibrating qMRI Measurements

• Myelin Imaging Applications

• In vivo histology ?

• Conclusions
Conventional and quantitative magnetic resonance

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>IR</td>
<td>1084 (45)</td>
<td>690 - 810</td>
<td>1000 - 1100</td>
<td>943 (57)</td>
<td>800 - 940</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LL</td>
<td></td>
<td></td>
<td>964 (116)</td>
<td></td>
<td>755 (10)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VFA</td>
<td>1084 (79)</td>
<td>1000 - 1100</td>
<td>900 - 1020</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Cheng, Stikov et al. (JMRI 2012)

T₁ weighted
IR T1 mapping equations

\[M_z(TI) = c(1 - 2e^{-T_1/T_1}) \]

(1) The simplest IR fitting formula, but assumes TR>>T1

\[M_z(TI) = c(1 - 2e^{-T_1/T_1} + e^{-T_R/T_1}) \]

(2) Accounts for TR finite, but assumes perfect flip angles

\[M_z(TI) = c(1 - [1 - \cos \theta_1]e^{-T_1/T_1} + e^{-T_R/T_1}) \]

(3) Accounts for inversion pulse \(\theta_1 \), but not for excitation \(\theta_2 \).

\[M_z(TI) \propto M_0(1 - \cos \theta_1 \cos \theta_2 e^{-T_R/T_1}) \]

(4) Which can be simplified to:

Barral et al. MRM 2010
Protocol standardization

Barral et al. (MRM 2010)

Stikov et al. (MRM in press)
Explaining the T_1 discrepancy

Stikov et al. (MRM in press)
• The Problem with quantitative MRI

• Calibrating qMRI Measurements

• Myelin Imaging Applications

• In vivo histology?

• Conclusions
Getting T_1 Right

Mezer, Yeatman, Stikov et al. (Nature Medicine 2013)
Relating T1 to tissue content

Water Volume Fraction (WVF)

PD(tissue)/PD(CSF)

$$S(\alpha) = M_0 \sin(\alpha) \left(\frac{e^{-\frac{TR}{T_1}}}{1 - \cos(\alpha) e^{-\frac{TR}{T_1}}} \right)$$

$$M_0 = g \times PD \times e^{-\frac{TE}{T_2}} = g \times PD$$

Macromolecular Tissue Volume

$$MTVF = 1 - WVF$$

Mezer, Yeatman, Stikov et al. (Nature Medicine 2013)
Relating MTVF and T1
Processing pipeline

https://github.com/mezera/mrQ

An example data set can be found at http://purl.stanford.edu/qh816pc3429.
Processing pipeline

\[\frac{1}{T1} = FIWP \left(\frac{1}{T1_C} + (1 - FIWP) \frac{1}{T1_f} \right) \]

\[T1_C = a_1 L + a_2 \]

\[VIP = FIWP(1 - MTVF)V \]

\[SIR = VIP / MTV \]

https://github.com/mezera/mrQ

An example data set can be found at http://purl.stanford.edu/qh816pc3429.
• The Problem with quantitative MRI

• Calibrating qMRI Measurements

• Myelin Imaging Applications

• In vivo histology?

• Conclusions
Myelin Imaging

Free protons - water

Bound protons - macromolecules

Fractional Pool Size (F) =

sphyngomyelin

Quantitative magnetization transfer (qMT)

MTVF Correlates with F

MTVF complements FA

MTVF drops in MS
For all the fibers in the brain...

... assign a mean F score ...

... isolate the top F fibers
(95th percentile)
Top F Fibers

Stikov et al.
(Neuroimage 2011)
Five Subjects - Top F Fibers

Stikov et al. (Neuroimage 2011)
Tractometry in Multiple Sclerosis

Top 5% MTR fibers

Bottom 5% MTR fibers
Is it thickness or density?

~ age 1 year
(dense but thin)

~ age 15 years
(sparse but thick)

The myelin g-ratio

\[g = \frac{r}{R} \approx 0.6-0.8 \]

- associated with gender differences in brain development

 Paus and Toro (2009), Front Neuroanat 14(3): 1-7
 Perrin et al. (2009), Neuroimage 45(4): 1055-1066

- g-ratio variations reported in schizophrenia

 Uranova et al. (2001), Brain Res Bul 55(5): 597-610

- evaluating remyelination in Multiple Sclerosis

Rushton (1951) J Physio, 115(1):101-122
Brain Tissue Model

\[g = \frac{r}{R} \]
\[r = Rg \]

Myelin Volume Fraction = (MVF)
Fiber Volume Fraction = (FVF)

\[\Sigma_i \pi R_i^2 - \Sigma_i \pi r_i^2 \]
\[\Sigma_i \pi R_i^2 \]
\[g^2 \]

\[\text{MVF/FVF} = 1 - g^2 \]
\[g = \sqrt{1 - \text{MVF/FVF}} \]

Szafer et al. (1995) MRM 33(5): 697-712
Hall and Alexander (2009) IEEE Trans Med Im 28(9): 1354-1364
g-ratio imaging: what are we measuring?

\[g = \sqrt{1 - \frac{MVF}{FVF}} \]
g-ratio imaging: what are we measuring?

\[g = \sqrt{1 - \frac{MVF}{FVF}} \]

\[r(\theta) / R(\theta) = \text{const} = g \]
g-ratio imaging: what are we measuring?

\[g = \sqrt{1 - \frac{MVF}{FVF}} \]

\[r(\theta)/R(\theta) = const = g \]
g-ratio imaging: what are we measuring?

\[g = \sqrt{1 - \frac{MVF}{FVF}} \]

fiber caliber affects the measurement
g-ratio imaging: what are we measuring?

\[g = \sqrt{1 - \frac{MVF}{FVF}} \]

Average g-ratio = 0.5
g-ratio imaging: what are we measuring?

\[g = \sqrt{1 - \frac{MVF}{FVF}} \]

\(g \)-ratio we measure = 0.7
g-ratio imaging: what are we measuring?

$$g = \sqrt{1 - \frac{MVF}{FVF}}$$

$MVF \sim F, MTV...$

$FVF \sim ?$

g-ratio suggested 0.7
Simulating Diffusion in the Corpus Callosum

Aboitiz et al. (1993)
FVF \sim FA

\begin{figure}
\centering
\includegraphics[width=\textwidth]{figure.png}
\caption{Graph showing the relationship between fractional anisotropy and fiber count (fibers/μm²).}
\end{figure}
NODDI: Neurite orientation dispersion and density imaging

intra-axonal: anisotropically restricted

extracellular: hindered

CSF: not restricted or hindered

Zhang et al. NeuroImage 2012
NODDI: Neurite orientation dispersion and density imaging

- a model of cellular structure that allows for complex subvoxel fiber geometry (splay, curvature)
• The Problem with quantitative MRI

• Calibrating qMRI Measurements

• Myelin Imaging Applications

• In vivo histology?

• Conclusions
g-ratio in human Corpus Callosum

\[g = \sqrt{1 - \frac{MVF}{FVF}} \]

Lamantia and Rakic 1990

Stikov et al. (Neuroimage 2011)
g-ratio in non-human primates

FVF

MVF

g-ratio

0.7x0.7x3mm

Lamantia and Rakic

genu

splenium

21 µm

21 µm
Comparison with histology

<table>
<thead>
<tr>
<th>Histology</th>
<th>Genu (1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
<th>(7)</th>
<th>Splenium (8)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FVF</td>
<td>.76 (.07)</td>
<td>.71 (.06)</td>
<td>.60 (.05)</td>
<td>.69 (.05)</td>
<td>.76 (.05)</td>
<td>.74 (.04)</td>
<td>.68 (.04)</td>
<td>.66 (.07)</td>
</tr>
<tr>
<td>MVF</td>
<td>.40 (.05)</td>
<td>.38 (.02)</td>
<td>.35 (.02)</td>
<td>.36 (.03)</td>
<td>.37 (.02)</td>
<td>.44 (.02)</td>
<td>.43 (.03)</td>
<td>.29 (.03)</td>
</tr>
<tr>
<td>g-ratio</td>
<td>.69 (.03)</td>
<td>.69 (.03)</td>
<td>.64 (.04)</td>
<td>.69 (.02)</td>
<td>.72 (.02)</td>
<td>.64 (.01)</td>
<td>.60 (.02)</td>
<td>.74 (.04)</td>
</tr>
</tbody>
</table>
Comparison with histology

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
<th>(7)</th>
<th>(8)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FVF</td>
<td>.76</td>
<td>.71</td>
<td>.60</td>
<td>.69</td>
<td>.76</td>
<td>.74</td>
<td>.68</td>
<td>.66</td>
</tr>
<tr>
<td>MVF</td>
<td>.40</td>
<td>.38</td>
<td>.35</td>
<td>.36</td>
<td>.37</td>
<td>.44</td>
<td>.43</td>
<td>.29</td>
</tr>
<tr>
<td>g-ratio</td>
<td>.69</td>
<td>.69</td>
<td>.64</td>
<td>.69</td>
<td>.72</td>
<td>.64</td>
<td>.60</td>
<td>.74</td>
</tr>
</tbody>
</table>

20µm
g-ratio histological validation

MRI

EM

\(r = 0.7951 \) \(p = 0.018337 \)
Whole-brain g-ratio
Figure 4: Hyperintense MS lesions (arrows) are identified on the FLAIR image. While both the MVF and the AVF are significantly decreased at the lesion locations, the g-ratio map indicates that one of the lesions has significantly higher g-ratio (> .85) compared to the rest.
• The Problem with quantitative MRI

• Calibrating qMRI Measurements

• Myelin Imaging Applications

• In vivo histology ?

• Conclusions
In vivo histology?

Aboitiz et al. (1993)

Genu
FVF = 0.45
g = 0.55

Ant. Body
FVF = 0.44
g = 0.58

Mid Body
FVF = 0.45
g = 0.62

Post. Body
FVF = 0.46
g = 0.64

Spleniunm
FVF = 0.60
g = 0.72
In vivo histology?

McNab et al. ISMRM 2012

<table>
<thead>
<tr>
<th>Region</th>
<th>FVF</th>
<th>g</th>
</tr>
</thead>
<tbody>
<tr>
<td>Genu</td>
<td>0.45</td>
<td>0.55</td>
</tr>
<tr>
<td>Ant. Body</td>
<td>0.44</td>
<td>0.58</td>
</tr>
<tr>
<td>Mid Body</td>
<td>0.45</td>
<td>0.62</td>
</tr>
<tr>
<td>Post. Body</td>
<td>0.46</td>
<td>0.64</td>
</tr>
<tr>
<td>Splenium</td>
<td>0.60</td>
<td>0.72</td>
</tr>
</tbody>
</table>
Conclusions

qMRI can be calibrated

Combining qMRI biomarkers leads to in vivo histology

Histological validation is essential

\[\begin{array}{cccccccc}
\text{Histology} & \text{Histology} \\
.72 & .69 & .67 & .74 & .69 & .72 & .57 & .85 \\
\end{array} \]
Thank you

- BIC MRI Lab
- Aviv Mezer and VISTA lab
- Stroh, Bedell and Petrides labs
- MNI CECR Fellowship
Contact

E-mail: nikola.stikov@mcgill.ca

Web: www.stanford.edu/~nikola

Twitter: @Stikov