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Abstract: In the common approach to EEG dipole
modeling, one typically searches for the solution that fits
best the observed data for a given number of sources.
Instead of searching for this single ‘best’ solution, we
propose a method that attempts for each combination of a
few dipoles to infer whether these are plausible sources
given the observed EEG potentials. We use classical
statistical tests, thus enabling us to list the sets of sources
by order of significance and build probabilistic maps. We
present the method followed by a simulation on a 2-dipole
case.

INTRODUCTION
The spatial distribution of EEG potentials can be used to

infer the location of neuronal sources of events such as
epileptic spikes. However, the inverse problem is ill posed,
which means that an infinite number of different source
configurations can produce the exact same potentials on the
scalp. This requires the use of spatial constraints on the
sources. One approach is to restrict the source model to just
one or several current dipoles. In the noiseless situation, with a
properly designed captor array, the solution would then be
unique [1]. Unfortunately, in the real world situation the array
is not ideal (sparse sampling and the captors only enclose the
upper half of the brain) and the data are contaminated by
noise. This results in an ambiguous problem.

Traditionally, for a given potential distribution, one would
select the maximum likelihood (ML) solution. For example,
with the assumption of a white Gaussian additive noise, the
ML solution is that which minimizes the residual sum of
squares [2].

Recently, Schmidt et al. [3] have suggested assessing the
range of likely solutions. They used a Bayesian framework to
generate a probability for each solution. They used Markov
Chain Monte Carlo (MCMC) simulations to build statistical
maps of the probability of a given point to contain a source.

We propose here to consider solutions that consist of only
one to three dipolar sources, which is probably a reasonable
assumption in the case of epileptic spikes. We use a coarse
grid (1 cm spacing), which is still a useful resolution in
presurgical evaluation of epileptic patients and avoids MCMC
computations by enabling a permutation approach. We present
a method that evaluates the probability of a given combination
of dipoles to be consistent with the measured potentials. This
method tests the hypothesis that the model fits well the data
but also that all dipoles in the combination are useful. This is a
more strict rating of the combinations of sources than [3].

METHODS
Probabilistic model

We assume that the observed scalp potential distribution
is the sum of the contributions of each source,

(1)

with: Y observed potentials (#electrodes x 1); n number of
sources; θ source coordinates; A(n,θ) matrix (#electrodes x
3n) containing 3 orthogonal unit dipoles per location; B
source strength (3n x 1); E Gaussian noise with known
covariance Σ (here the noise components are assumed to be
independent and so Σ is diagonal). For a given (n, θ), we take
the weighted least squares estimate of B,

(2)

which corresponds to the minimization of the weighted
residual sum of square,

(3)

Test 1. With the assumption of known Gaussian noise,
the likelihood of the data for a given set of parameters (i.e.
we test that the model fits well the data) is:

(4)

with d= #electrodes, |Σ| determinant of Σ.

Test 2. We test the significance of increasing the model
order using an F-test. The SSQ given by (3) is tested against
the best (minimum) SSQ at order (n-1) (i.e. we test that
adding a dipole significantly improves the model). The test
is:

(5)

following an F distribution with 3 and (d-3(n-1)) d.f.

Test 3. We combine test 1 with examining the
contribution from each dipole to the fit (i.e. we test that the
model fits the data and that each individual source
contributes significantly to the combination). This is done by
replacing SSQmin

n-1 in (5) by the SSQ obtained by neglecting
the contribution of this source.
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One can then build probabilistic maps by integrating
solutions derived from these tests across the dipole
combinations.

Simulation
We simulated two radial dipoles at location (x,y,z) =

(-5, 5, 55) and (45, 5 ,45) within a three-sphere models with
scalp, skull and brain radii of 92, 85 and 80mm respectively (x
axis from back to front, y axis from right to left, z axis
pointing up) (Fig. 1). We used 71 channels (10/10 system).

We added one realization of white noise scaled so as to
produce a SNR of 20 (linear scale). We tried all combinations
of one, two and three dipoles on a grid (one sagittal plane, 1cm
spacing, fig. 1). For each combination, we evaluated formula
(4) and (5) and constructed two sets of maps,
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with I{B}=1 if B is true, I{B}=0 if B is false; tf  threshold for
the F-test at p=0.01 (no correction for multiple comparison);
npts number of grid points (here, npts=140).
Here, tf (n=2) = F-1(p=0.01, df1=3, df2=71-6) = 4.09

tf (n=3) = F-1(p=0.01, df1=3, df2=71-9) = 4.11

RESULTS
Figure 2 presents the maps obtained on the simulated data for
n=1,2 and 3. Map 1 has one peak for n=1, two peaks at the
correct source locations for n=2 and n=3. Map 2 has only 3
non-zero points for n=3 and the maximum F test value from
(5) is much lower for n=3, showing that a model with 3
sources does not improve significantly on the 2 sources model.
The integration of test 3 produced very similar results to MAP
1 (not shown).

Fig. 1: Two dipoles inside the scalp sphere (x axis from back
to front of head). The scanning grid is shown with crosses.

DISCUSSION
We have presented an approach that uses statistical

methods to assess possible sources to EEG potentials. The
number of parameters has been minimized. This is somewhat
contrary to the current tendency of trying to determine the
source locations with a very high precision, a difficult task in
a noisy situation.

All three tests will provide information on the ambiguity
of the problem, as the generated maps will become flatter
with less information revealed when the problem is very ill-
defined. Test 2 offers additional information on the model
order (number of dipoles) that is supported by the data. Test
3 could be more selective than test 1 alone in some situations.

Our simulation suggests that the use of model selection
techniques is a relevant approach in the EEG inverse problem
and can add information to the classical measure of
likelihood.
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Fig. 2. Probabilistic maps obtained on the simulated dipoles
(SNR of 20). Upper row: map 1. Lower row: map 2.
Columns: number of sources in the scanning.

n=1 n=2 n=3


