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Résumé

L’imagerie de la diffusion par résonnance magnétique s’est révélé être un
outil puissant d’analyse pour des besoins cliniques allant des plus simples
aux tâches les plus complexe d’établissement de diagnostiques spécialisés et
la planification de traitements médicaux. Plus particulièrement, l’imagerie
des tenseurs de diffusion (DTI) et la tractographie des fibres neurocérébrales
ont ouverts des champs de recherches qui, auparavant, se basaient principale-
ment sur des études post mortem. La tractographie par tenseurs de diffusion
commence à devenir un outil de diagnostique pratique et plusieurs appli-
cations biomédicales en faisant usage font leur apparitions. Cette méthode
utilise la direction de plus grande diffusion mesurée à l’aide de la DTI pour
déterminer le chemin suivit par les nerfs dans le cerveau. Malheureusement,
puisque les données mesurées sont bruitées et ont une résolution limitée, la
qualité de l’information qui en est extrait en souffre grandement. Ce rapport
étudie une nouvelle méthode pour réduire l’impact du bruit dans les données
d’origine. Il étudiera l’utilisation de la transformée en ondelettes comme
outil d’analyse du contenu des données et ensuite montrera comment pour
chaque coefficients d’ondelettes si les variations locales dans le signal doivent
être conservées ou enlevés. Afin d’obtenir une estimation multirésolution
du signal, une méthode de seuillage récursif est utilisé. Ce rapport étudie
aussi comment il est possible d’améliorer davantage l’analyse des images en
réénchantillonnant le signal le long des lignes de flôts. Par la suite, une
méthode pour résoudre les équations différentielles ordinaires est présentée
et son application à la tractographie et les tenseurs de diffusion est dis-
cutée. Une méthode d’interpolation de données discrètes pour les tenseurs
et un critère d’arrêt sont aussi étudiées. Une implémentation algorithmique
à l’intérieur d’un logiciel est présentée et quelques résultats sont montrés.



Abstract

MR diffusion imaging has become a powerful, multi-faceted tool both for
very basic clinical needs and for advanced, specialized diagnosis and treat-
ment planning. In particular, diffusion tensor imaging (DTI) and nerve fiber
tractography have opened up new research possibilities in areas that hitherto
relied largely on postmortem studies. Diffusion tensor tractography is start-
ing to become a diagnostically helpful tool and new applications are emerg-
ing. It uses the principal diffusion direction measured with DTI to compute
the pathways of complete nerve fiber tracts. However, as the data acquired
has limited resolution and contains noise, the quality of the information ex-
tracted from it will be greatly limited by this. This report investigates novel
methods for reducing the impact of noise in the original data. We investigate
the use of the wavelet transform to analyze the content of the data and then
decide for each coefficient if the local variation in the signal should be kept or
removed. To obtain a multiresolution filtered estimation of the noisy signal,
a recursive thresholding scheme is applied to the remaining scaled signal. We
further investigate how to improve the overall filtering scheme by resampling
the signal along the flow lines. A method for solving ordinary differential
equation is also introduced and applied to the special case of tensor data.
We investigate a continuous description of the tensor data and how to intro-
duce a stopping criteria in the tractography. Finally we describe algorithmic
implementations and provide results of reconstructing white matter tracts in
the human brain in vivo.
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Chapter 1

Introduction

Water diffusion is a well known phenomenon since the Brownian motion
was described by a botanist, Robert Brown, at the beginning of the 19th

century and the theoretical framework given by Einstein at the beginning
of the 20th successfully explained it. However, the scientific community had
to wait until recent development in Magnetic Resonance Imaging (MRI) to
be able to effectively measure water diffusion inside complex structure like
the human brain. Nowadays, diffusion tensor imaging (DTI) prooved to be
useful in application ranging from basic clinical needs to highly sophisticated
imaging application. Hence, the intricate connective architecture of the most
complex human organ can be studied non-invasively.

In this internship, I had the chance to study the regularization of fiber
tractography, an application of DTI, which ables us to fully reconstruct the
inner structure of the white matter by following fiber tracts in a water diffu-
sion tensor map. Moreover, the main objective was to program a fully work-
ing tractography program implemented as a module inside the main software
developped at the Surgical Planning Laboratory, the 3D-Slicer. This com-
plex project required to solve many problems and the purpose of this report
is to describe the fiber tractography module I implemeted. The structure of
the report is the same as the way the reconstruction of in-vivo white matter
contruction should be done. I first remind the principle of water diffusion
and explain how it can be measured using magnetic resonnance imaging. Af-
terwards, I describe a method to regularize the signal by filtering the noise
inside the slices. The method described is based on a novel bandelet trans-
form [7] and in this report, practical results of its ability to preserve edges
in signal denoising is given. After that, I explain the tractography method
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implemented into the module to extract the white matter structure from the
diffusion tensor data with the regularization scheme to avoid discontinuous
fibers and stop where the fibers end. Finally, I explain how I complied with
the main objective by describing the implementation inside the 3D-Slicer and
the programming environment with the wide range of tools available at the
SPL. I will also show the interface of the module and some results.
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Chapter 2

Diffusion Tensor Magnetic
Resonance Imaging

Diffusion tensor imaging is an imaging technique which can be used to inves-
tigate the structure of highly oriented fibers - such as muscles or the white
matter - inside the human body without performing any kind of surgical or
chemical invasion. It is based on the ability of magnetic resonance imaging to
measure water diffusivity inside a fluid. However, the images, depending on
numerous factors such as body motion and cardiac pulse, can be really noisy
and those factors impair our ability to perform fiber tractography. Hence, in
order to better understand the origin of the noise, it is important to earn a
better understanding of this imaging technique.

2.1 The water diffusion phenomenon

Water diffusivity is a well known phenomenon since Robert Brown observed
the random motion of pollen inside water and described what is called the
Brownian motion at the beginning of the 19th century. However, the scientific
community had to wait until 1905 when Einstein gave a theoretical framework
to water diffusion to really understand this phenomenon. Nowadays, it is
well known that the water diffusion is related to the random paths water
molecules follows from the point where they start. Hence, the probability to
find a water molecule around its starting position after a small amount of
time can be seen in the left figure 2.1. This is the isotropic diffusion case.
However, this probability distribution assumes that the water molecule is free
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Figure 2.1: Probability distribution of the diffusion of water inside an
isotropic medium like water and an anisotropic medium like white matter

to diffuse in any direction. Therefore, if there are biological barriers such as
cell membranes, macromolecules, axons, which tend to slow water diffusion
along particular directions, it will interestingly modify the measured diffusion
pattern like it can be seen in the right image in figure 2.1. Those constraints
can reveal information about the inner structure of the investigated tissue.
However, in most tissue, diffusivity barriers such as cell membranes present
no particular macroscopic voxel size direction and they tend to void each
other which brings us back to the case of isotropic diffusion. Obviously,
such diffusivity does not tell us much about the inside structure of a tissue
but, however, in white matter, the myelinated fibers covering the axons of
the neurons are tightly packed to connect the different regions and offer a
great barrier to water diffusion as it is shown in figure 2.2. This brings an
interesting case, where analyzing water diffusivity inside a tissue gives us
an overall orientation field of the fibers it contains. Moreover, inside white
matter this field can give us directly the direction of the axon propagation
inside it and given a good tracking method, it makes it possible to reconstruct
the overall structure of the connection inside the white matter.
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Figure 2.2: Diffusion of water inside tightly packed myelinated fibers

2.2 Tensor Notation

Since this report greatly uses tensors, a tensor notation is used to note ma-
trices and vectors. Therefore, throughout this report, vectors, or first order
tensors, are noted v. Matrices, or second order tensors, are noted m. The
tensor cross product is noted ⊗ and if m = v ⊗ w then mij = vi · wj if mij

is the ith component of the jth column of m and vi is the ith component of
v. Finally, the tensor double dot product is noted : and if s = m : n then
s =

∑
ij mji · nij.

2.3 Measuring Diffusion

Unless it is possible to measure diffusion, any theoretical analysis of it remains
useless. Luckily, through different contributions, it is possible nowadays to
measure such diffusion. The first contribution was made by Stejskal and
Tanner in 1965 [8]. They described an imaging sequence able to measure
diffusion inside water. The second contribution was made by LeBihan in
1986 [5] which introduce diffusion weighted imaging The third was made
by Basser [14] a few years later in 1994 which introduced diffusion tensor
magnetic resonance imaging.

The imaging sequence introduced by Stejskal and Tanner uses the water
molecule property of being electromagnetically oriented along a particular
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Figure 2.3: The Stejskal-Tanner Imaging Sequence. Picture is from [18]

direction, to measure its diffusivity. It consist of two strong diffusion pulse
gradients g positioned around a 180◦ refocusing pulse. Such a signal can be
seen in figure 2.3. The first 90◦ pulse induces a phase shift in the spin of
every water molecule and the 180◦ second corrects it for the water molecule
which refocused to their original position. For the molecules which did not, a
signal loss occurs and the remaining signal is measured. Therefore, by insert-
ing gradients (g) along particular directions, the displacement along specific
direction can be amplified if no biological contraint is presnet resulting in
greater signal loss. Hence, since a diffusion tensor has six independant com-
ponents, by measuring the signal along six different gradient directions, it
should be possible to build diffusion tensor. However, the images obtained
has to be corrected to take into account the density of spin, e.g. the density
of water molecules as proposed by LeBihan [5]. Such a density can be ob-
tained by using the same signal with no gradients g. To better understand
how it works, an example signal is shown in figure 2.4. This figure shows
the measured water density in a brain slice. By looking in figure 2.5 which
represents six different measured gradients slices, it is possible to observe the
difference in the signal loss by inserting different diffusion gradients g. The
actual diffusion is obtained from two images by using the formula introduced
by Stejskal and Tanner [8]

S = S0e
−bD (2.1)

where D is the water diffusion and b is the weighting factor introduced by
LeBihan [5] with

b = γ2δ2(∆− δ

3
)‖g‖2 (2.2)
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Figure 2.4: Measured density of spin inside the brain

where γ is the proton gyromagnetic ratio (42 MHz/Tesla), δ is the duration of
the gradient pulse g and ∆ is the duration between the two gradient. Finally,
to build tensors from the signals, the employed method in this report is the
line scan diffusion imaging [10, 15]. This method has been proven to be
relatively insensitive to bulk-motion and it can be deduced from equation
2.1 by writing the tensor form of the Stejskal-Tanner formula

S = S0e
− b
‖g‖2

gT Dg
(2.3)

where D is the diffusion tensor and g is the diffusion gradient in 3D coordi-
nates. Therefore, with the six gradients

g
1

= 1√
2

 1
1
0

 g
2

= 1√
2

 0
1
1

 g
3

= 1√
2

 1
0
1


g

4
= 1√

2

 0
1
−1

 g
5

= 1√
2

 1
−1
0

 g
6

= 1√
2

 −1
0
1

 (2.4)

the six different diffusion images are obtained

βk = gT

k
Dg

k
= D : (g

k
⊗ g

k
), k = 1 . . . 6 (2.5)

Such images can be seen in figure 2.5. The basis of the tensor can be written
as G

k
= g

k
⊗ g

k
, k = 1 . . . 6. Reconstructing the diffusion tensors from the

six images βk is simple if the tensor basis g
k
⊗ g

k
allows a dual basis which
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Figure 2.5: Six gradient images from which it is possible to reconstruct tensor
data

is given in equation 2.6

G̃
1

= 1
2

 1 1 0
1 1 0
0 0 −1

 G̃
2

= 1
2

 −1 0 0
0 1 1
0 1 1

 G̃
3

= 1
2

 1 0 1
0 −1 0
1 0 1


G̃

4
= 1

2

 −1 0 0
0 1 −1
0 −1 1

 G̃
5

= 1
2

 1 −1 0
−1 1 0

0 0 −1

 G̃
6

= 1
2

 1 0 −1
0 −1 0

−1 0 1


(2.6)

It is easily possible to verify that G̃
i
: G

j
= 0 for i 6= j and G

i
: G̃

j
= 1 if

i = j. Therefore, since it has at least as much component (six) as the number
of independant component in a diffusion tensor, it can be deduced from 2.5
that

D =
6∑

k=1

βkG̃k
(2.7)

A longer and more complete explanation of this reconstruction can be found
in [18]. A reconstruction of the tensor data can be seen in figure 2.6. What
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Figure 2.6: A Diffusion Tensor Slice. The colors represent the direction of the
eigenvector of the highest eigenvalue of the tensor. Red means the principal
direction is perpendicular to the slice
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is plotted in this figure is a color coded orientation of the highest diffusion
direction. This shows that, using magnetic resonance imaging, it is possible
to acquire a diffusion tensor map in-vivo of a living brain. Nevertheless, as it
is shown in figure 2.6, the data contain noise and if it not removed or if the
data is not regularized, it may make it harder to extract fibers and perform
tractography. This is the main problem I had to solve in this internship and
it shows the importance of regularization of fiber tractography.
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Chapter 3

Signal Filtering

The previous chapter explored a method for measuring water diffusion inside
the white matter using magnetic resonance imaging. However, like any other
analogic signal, it might contain noise and if it is not filtered, it will affect
the quality and the to regularity of the information extracted from it. Low
pass filtering the signal can help regularize it, but using only a linear filter
will fail to keep some important features such as the edges of the white mat-
ter. Therefore, an estimator which offers some robustness to those features
is needed. This chapter will describe a multiresolution spatially adaptive
filtering technique based on a novel bandelet transform proposed by [7] and
will give example of regularized data using this filter.

3.1 Wavelets: A Time-Frequency Analysis

The filtering method will use a powerful mathematical tool to describe a basis
over which information will be concentrated along a few coefficients and noise
along every coefficients. This distribution will permit easy discrimination
between the original signal and noise and the filtering method will consist
of a simple thresholding of the smallest coefficients associated to the noise.
However, in order to understand the filtering method, it is important to
make a brief introduction of the mathematical tool in question, the wavelets.
Nevertheless, a complete introduction to this field would be too fastidious
and is not the intended purpose of this report. If the reader wants to read a
good book about the wavelet theory, he might want to refer to [16].
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3.1.1 The Windowed Fourier Transform

Using proper equipment, it is very easy to record a human speech and obtain
a discrete representation of what was said. Using the Fourier transform it is
also possible to analyze its specter. Nevertheless, the specter of the signal
will hardly give us useful information about what was actually said. It will
be possible to tell if there was “a” or “e” in the speech but the specter reveals
no information about when the “a” or the “e” was positionned in the speech.
To tell such a thing a time-frequency analysis tool rather than a frequency
analysis like the Fourier transform is needed.

Suppose we have a signal S(t) and its Fourier transform F{S(t)} = Ŝ(ξ).
We will try to tell where are located the features in the signal. A feature is
anything relevant to the signal such an “a” or an “e” for a speech or an edge
in an image. An easy way to do this is to perform the Fourier transform only
on a small part of the signal. We therefore define a window function W (x, t)
which is centered around t and is defined by ( as an example )

W (x, t) =
1‖t−x‖<a

2a
(3.1)

The windowed Fourier transform of the signal is simplify defined by project-
ing the signal on this function.

WF{S(t)} = WŜ(x, ξ) =

∫
R
S(t)W (x, t)e−iξtdt (3.2)

The windowed Fourier transform makes possible to detect features in a signal
by analyzing small parts of it. However, what is gained in time resolution
is lost in frequency resolution. Multiplying the signal by the windowing
function is in fact the same as convoluating the frequency function by a low
pass filter Ŵ (x, ξ). The associated low pass filter is

Ŵ (x, ξ) =
∫
R

1‖t−x‖<a

2a
e−iξtdt

= 1
2a

∫ x+a

x−a
e−iξtdt

= e−iξxsin(aξ)
aξ

= e−iξxsinc(aξ)

(3.3)

From this function, it is possible to see that the smaller is a, the more in-
formation we will get about “when the feature happened” ( sharper box
function ) but, however, the least information we will get about “what actu-
ally happened”. This the Heisenberg theorem applied to signal processing,
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it is impossible to obtain perfect information about the frequency and the
time. In fact, it is possible to proove that if we note ∆x the resolution in the
time domain and ∆ξ the resolution in the frequency domain, we will always
have ∆x ·∆ξ ≥ 1

2
and the equality is obtained for a gaussian like windowing

function ( see [16] for a proof ).

3.1.2 A Projection Basis

Using this knowledge about the time-frequency resolution problem, we will
design an orthonormal basis to project a discrete signal to obtain the more
useful information as possible. To be complete, the projection basis should
cover the whole domain where the function is defined in time and in frequency.
We suppose we have a windowing function W (t) with a time resolution ∆t
and a frequency resolution ∆f . An easy orthonormal projection basis can
be build by translating this windowing function in time by an amount of ∆t
and in frequency by an amount of ∆f . This therefore form an orthonormal
basis of the whole time-frequency domain.

Wj,m(t) = e−ij∆ftW (t−m∆t) (3.4)

Of course, this basis will be orthonormal for any function W (t) if and only
if

< Wj1,m1 ,Wj2,m2 > = 0 if j1 6= j2 or m1 6= m2

= 1 otherwise
(3.5)

where < f, g >=
∫

D
f(t)g∗(t)dt is the scalar product. The projection of a

discrete signal onto this basis is simply

WF{S(t)} =
∑
j,m

< S,Wj,m > Wj,m(t) (3.6)

It is interesting to note that by using different value of ∆t and ∆f , it is
possible to define the discrete fourier transform [16]. We can see how the
time-frequency space is divided for different basis in figure 3.1.

3.1.3 The Discrete Wavelet Transform

When analyzing a signal, it might be more convenient to have a higher time
resolution when analyzing high frequencies and a higher frequency resolution
when analyzing lower frequencies. For example, when looking for a sharp
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Figure 3.1: Different basis for the time-frequency domain.
Up: Pure Time basis
Middle: Pure Frequency Basis
Bottom: A Time-Frequency Basis
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Figure 3.2: Division of the time-frequency domain with a wavelet basis.
Higher frequencies have a smaller time support than lower frequencies.

edge, we would like to have a higher time resolution to be able to localize
sharp edges that when looking to the global variation in the signal. This is
why the wavelet basis was designed. A time-frequency representation of the
wavelet basis is shown in figure 3.2. The projection is now performed over
a wavelet function ψ(t) instead of a windowing function W (t). The wavelet
basis is simply defined by translating and scaling the wavelet function.

ψj,m(t) =
1√
2j
ψ(
t− 2jm

2j
) (3.7)

The discrete wavelet transform can be implemented easily by a pair of
two biorthogonal filter [16]. Such a pair of filter can be seen in figure The
projection is obtained recursively by filtering the signal by the two filters and
then by downsampling the result by two. A scaled signal and a detail signal
associated to the first order wavelet decomposition ( highest frequencies ) is
obtained using this method. The recursive decomposition scheme consist of
applying the two filters to the scaled version of the signal and downsampling
again the result. An example of the first order of the decomposition of 2D
signal ( figure 3.4 ) is shown in figure 3.5. It is possible to see in this figure
that the wavelet decomposition was able to highlight where are the highest
variation in the image.
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Figure 3.4: Lena, an example image widely used in signal processing
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Figure 3.5: The wavelet decomposition of Lena
Top left: The remaining scaled signal
Top right: vertical details
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Since the wavelet form an orthogonal basis, it is possible to obtain the
original signal from the wavelet decomposition by upsampling the signal by
two, then applying the conjugate mirror of the biorthogonal filters to the re-
sult and combining the two signal [16]. A representation of the decomposition
and reconstruction algorithm is shown in figure 3.6.

3.2 An estimator for a noisy signal

One interesting property of the wavelet transform is that noise present in the
original signal contribute to every coefficient of the detail images or wavelet
coefficients while the original signal only contributes to a few coefficients.
We will use this property to filter out the signal. Therefore, as the energy
of the noise is distributed in a large number of coefficients and the energy of
the signal in only a few, it should be easy to remove noise from an image by
thresholding the smallest wavelet coefficients.

To better understand the filtering method we will use an example one-
dimensional signal ( top figure 3.7 ). We suppose that the signal was
modified by a gaussian white noise ( bottom figure 3.7 ). In fact, [13] showed
that in the case of a noise level higher than 3db in Magnetic Resonnance, it
is possible to make this hypothesis. Therefore, we now have a signal sampled
at n different time t.

Yi = Si + Zi, i = 1, . . . , n (3.8)

where Si is the signal and Zi is the gaussian white noise. We thus define a
threshold estimator of a signal

F ′
i = Fi · 1{|Fi|>Tc} (3.9)

As stated above, using this thresholding operator to remove the smallest
wavelet coefficients or, in other words, to smooth the smallest local variation,
it should be possible to remove the noise from the signal. In fact, if we define
a risk estimator as

R(F ′, F ) =
1

n
E‖F ′ − F‖2

L2
(3.10)

Donoho and Johnstone [6] showed that thresholding the smallest coefficient
is a method to remove noise that is optimal in the sense that it minimizes
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Figure 3.6: The wavelet decomposition and reconstruction scheme. The
figure was taken from [16]
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the risk R while it maximizes signal recovery. They also prooved that the
previous statement is true for a threshold value

Tc = γ
√

2 loge n · σ (3.11)

where σ is the noise variance and γ is a parameter we can set to account for
how much signal loss is acceptable. Therefore, this filtering technique can be
applied easily to every signal by thresholding the wavelet coefficient and the
multiresolution decomposition scheme consists of recursively applying it to
the approximation signal.

As it is always better to look over a real example, we will try to remove
the noise from the bottom signal in figure 3.7. We can see in figure 3.8 the
order one to five wavelet decomposition of the signal and the remaining scaled
signal. As we can see in the decomposition, the wavelet decomposition can
relatively well detect the sharp edge while the remaining signal contains less
noise while it also smooths the original sharp edge. If we choose γ = 0.3, the
result of the thresholding is shown in figure 3.9. From this figure, we can see
that the wavelet coefficients were almost all removed while those associated
to the edges were kept. Finally, after the reconstruction, we can see on the
same figure that the filtering method was able to give a good estimation
of the original signal. The method extends directly from one dimension to
N dimensions by using the same threshold over the N dimensional wavelet
transform.

3.3 Improving Wavelet Filtering with Flow

Analysis

Even if a N dimensional filtering method was define from a working one
dimensional method, as we will see in the next example, some problems may
appear in higher dimensions. In fact, in the first part of this chapter, a
discussion about how the time-frequency domain could be divided to better
represent the data. In this part, we will discuss how to divide 2D of ND
images to highlight edges. Lets first what happens if no adaptation is done.
In figure 3.10, we can see a signal and the same signal with noise added.
In figure 3.11 we can see the wavelet decomposition of the signal and in
figure 3.12 the thresholded version ( σ = 0.2 , γ = 1.0 ) of the wavelet
decomposition. Finally, in figure 3.13 the result of the filtering method is
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Figure 3.9: Example of the filtering method. The first five signals are the
thresholded wavelet decomposition signal, the sixth is the remaining signal,
the seventh is the reconstructed signal and the eigth is the original signal

Figure 3.10: An example 2D signal ( left ) and the same signal with some
gaussian white noise σ = 0.2 added ( right )
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Figure 3.11: Wavelet decomposition of a noisy signal

Figure 3.12: Thresholded version of the noisy signal
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Figure 3.13: Filtering of 2D signal

shown. The last figure shows mainly two things: the first one is that the
wavelet shrinkage can effectively be used to filter data as it can give relatively
acceptable result. The second is that using the wavelet transform in an N -
dimensional space can sometime fail to detect edges as it did not detected
any edges in the horizontal detail nor in the diagonal images ( see figure 3.12
). This is reflected in the filtered reconstructed image by the “horizontal
dispersion” in the signal. We will show how such dispersion can be avoided.

[7] showed that the number of contributing wavelet coefficient can be
reduced by analyzing the flow in the signal and adapting the wavelet basis
to it. In other word, like the time-frequency domain was adpated to find
the edges, the N -dimensional time domain should be divided along the flow
lines to highlight edges in this space. Nevertheless, let us first define what
is meant by the flow and show how a wavelet basis can be adapted to it.
The flow could be seen as the direction of the propagation of the data inside
an image like the motion of an object inside it. An example of a vertically
perpendicular flow is shown in figure 3.14. We can find the flow in an image
by finding the solution of the minimization problem of the flow energy

E(τ) =

∫
Ω

∣∣∣∂(f ◦ θ)(x)
∂τ(x)

∣∣∣2dx (3.12)

28



50 100 150 200 250

50

100

150

200

250

Figure 3.14: Finding the flow in an image

where τ is the flow, Ω is the space where we want to find the flow and θ(x)
is a regularization gaussian filter that has to be adjusted to the resolution at
which we would like to find the flow. For the examples in this report, θ(x)
was fixed to a gaussian filter of variance σ = 1.

The easiest way to adapt the wavelet basis to the flow in the image
is to resample the image along the flow lines and to perform the filtering
on the resampled image. However, to avoid a non-rigid transformation by
resampling, we must force the flow to vary along only one dimension. Hence
we can express it as τ(x) = τ(xv) where v is the dimension along which
the flow varies. As an example, we will use the noisy signal shown in figure
3.10 and assume that the flow is parrallel vertically. Such a flow is shown
in figure 3.14. Therefore, using, this specific case and assuming that x1 is
the horizontal coordinate in the image, we can rewrite the flow as τ(x1) =
(1, c′(x1)) and the minimization problem becomes

E(τ) =

∫
Ω

∣∣∣f ◦ ∂θ

∂x1

(x) + c′(x1)f ◦
∂θ

∂x2

(x)
∣∣∣2dx (3.13)

The flow shown in figure 3.14 is the result of the minimization problem 3.13.
Afterwards, to resample the signal along the flow lines we define a trans-
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lation for every points (x1, x2) as (x1, x2 + c(x1)) where

c(x1) =

∫ x1

0

c′(u)du (3.14)

Since the signal in only sampled at discrete point, we will have to interpolate
it. In the next chapter, we will use B-Splines to interpolate a signal between
its sampling points. However, in this problem, the B-Spline is not accurate
enough and tends to smooth out the edges. Therefore, we will need to use
a perfect interpolation method. We know that a shift of a function induce a
phase shift in the fourier domain.

F{f(t− x)} = e−iξxf̂(ξ) (3.15)

Therefore, we can resample the image along the flow lines by taking the
inverse transform of this phase shift.

f(t− c(x1)) = F−1{e−iξc(x1)f̂(ξ)} (3.16)

The resampled image is shown in figure 3.15.
We can see how the resampling regularized the curve in the image. There-

fore, regularizing the flow in the image could be seen as regularizing any
information about edges in the image and we will see how this can improve
the filtering result. Moreover, [7] proposed to add to the previous decompo-
sition scheme one more wavelet decomposition of the horizontal detail image
in the horizontal direction to take advantage of the regularity along the flow
lines. This is the bandelet decomposition. The decomposition of image 3.15
is shown in figure 3.16. As we can see in this figure, there is less signal
contributing coefficients and they have a greater magnitude. We can see in
figure 3.17 the thresholded version of this signal with the same parameters as
in section 3.2 ( γ = 1.0, σ = 0.2 ). The reason for using the same parameter
as in the previous section is to offer a good basis for comparison of the effect
of resampling along the flow lines. However, as we can see in figure 3.17, the
most important coefficients of the first level of the decomposition were all
removed because of the level of thresholding. This will cause small ringing
in the result around the edges of the curve as we can see in figure 3.18.

3.4 From Local Filtering to Global Filtering

So far, we defined a filtering method that could use the regularity along
the flow lines to preserve the important features contained in the signal.
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Figure 3.15: A noisy signal resampled along the flow lines

However, the hypothesis that the flow is parallel along N − 1 dimensions
for an N dimensional signal is quite strong and very few real life signals can
easily meet this hypothesis. An example of such a complex image is shown in
figure 3.19. Also, it is hard to tell wether it is more optimal to find a parallel
flow vertically or horizontally. A method to solve for both problems has been
proposed in [7]. However, in this report, we will show how a simple method
can be used to adapt the filtering method to complex image. It is based
on the asumption that even if the complex signal does not have parallel flow
globally, it might have one locally. Therefore, we first cut small vertical band
in the image ( figure 3.20 ). An example band is shown in figure 3.20 and
it now look easier to analyse. This band was resampled along the flow lines
and the result in shown in figure 3.21. This shows that finding a flow along
a small band succeeded. The filtering was therefore applied to the small
bands. Every band was padded with data from the other bands to keep it
continuous across the borders and the image was cut vertically first and then
horizontally. Therefore, instead of looking only vertically or horizontally for
a parallel flow, we looked both direction.

The last thing we need to find before filtering the signal is to estimate the
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Figure 3.16: The wavelet decomposition of a resampled noisy signal with
the horizontal detail image decomposed one more time along the horizontal
direction
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Figure 3.17: The thresholded wavelet decomposition of a resampled noisy
signal
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Figure 3.18: A filtered noisy signal reconstructed from a thresholded wavelet
decomposition scheme with resampling along the flow lines
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Figure 3.19: A slice of a brain using magnetic resonance imaging

Figure 3.20: A small band of the brain slice

Figure 3.21: A small band of the brain slice resampled along the flow lines.
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Figure 3.22: Distribution of the wavelet coefficients

noise variance. Since the noise contributes to every coefficient in the wavelet
domain, we should be able to estimate it easily in this domain. We can see
the distribution of the wavelet coefficients of the brain slice 3.19 in figure
3.22. This distribution shows easily that the wavelet distribution follows
approximately a gaussian distribution and, we can set directly the product
of γ ·σ = 100.0. This choice might seem rather arbitrary and a better way to
set the threshold value could be discussed. It however, gave good result as it
is possible to see it in figure 3.23. However, looking at the wavelet coefficient
distribution can give a good starting point to set the thresholding value.

As a way to test the quality of the result, we can look at the difference
between the original signal and the filtered signal in figure 3.24. What we
should see on the difference is pure noise. However, we can see around the
brain some edges and inside the brain also there is some structured data.
This proves that this filtering technique can still be improved but the result
is promising. A complete set of images to reconstruct a diffusion tensor slice
is shown in figure 3.25. Another way to validate the result could have been to
obtain a high resolution image and a low resolution image and then, trying
to remove the noise in the low-resolution image and by comparing it to the
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Figure 3.23: A filtered slice of a brain
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Figure 3.24: The difference between the filtered signal and the original signal

high resolution image. However, in the purpose of this report, I am unable
to do such a test even if the result could have been interesting. We can still
see from the result shown in figure 3.25 that the filtering method successfully
removed a major part of the noise while preserving the edges.
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Figure 3.25: A complete filtered data set with for one tensor slice. The origi-
nal data is also shown for comparison purpose. The same filtering parameter
was applied to every image (γ · σ = 100)
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Chapter 4

Fiber Tractography

In the previous chapters, the problem of acquiring diffusion tensor infor-
mation and a possible method to remove noise from it was discussed. As
previously discussed, since the diffusion tensor imaging reveals the orienta-
tion of the connective structure of the white matter, it should be possible to
visulaize it by analyzing this information. [1] proposed a method to extract
the connective structure of the white matter and it is presented in this chap-
ter along with other regularization method to regularize the reconstructed
fibers.

4.1 Fiber tracking and tractography

With an imaging technique able to measure diffusion tensors inside white
matter, it is possible to describe a technique to reconstruct fiber tracts from
this data or to do tractography. It is important to note that in this chapter,
the notation of upper indices for time dependent tensors like F i = F (i∆t)
refers to the time elapsed and ∆t will be the step size of our alogorithm.

The overall idea of the fiber tractography method as proposed in [1] is
to follow at every point of the fiber the highest diffusion direction. Here is a
presentation of the fiber tracking method. If we consider we have a diffusion
tensor field as:

ε(x) =

 εxx(x) εxy(x) εxz(x)
εxy(x) εyy(x) εyz(x)
εxz(x) εyz(x) εzz(x)

 (4.1)

which represents a second order tensor defined over the whole tridimensional
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space, we will try to reconstruct a fiber inside this tensor field starting from
the point F 0 = F (0). From this information, we will see how it is possible
to extract a discrete fiber tract F i = F (i · ∆t) where F (t) is the analytical
solution of the fiber tract. Its associated propagation direction will be noted
pi(x) = p(x, i ·∆t).

The first thing we need to find in order to extract the fiber is the first
propagation direction. We note ε0 = ε(F 0). Since the fiber tract direction is
the direction of maximum dffusion, we extract it from the tensor field by di-
agonalizing the tensor and taking the eigenvector assiciated with the highest
eigenvalue. Since we are measuring diffusion, we expect all our eigenvalues to
be positive and, therefore, the tensor defined should be positive semi-definite.
This hypothesis must be made cautiously because depending on the filtering
technique used, some negative eigenvalues can appear. If the eigenvalues are
sorted λ0 > λ1 > λ2, we now have a starting propagation field

p0(x) =
(
px(x), py(x), pz(x)

)
where ε(x)·p0(x) = λ0·p0(x) and ‖p0(x)‖L2 = 1

(4.2)
On the first step, we don’t know which way the fiber is going therefore the

tractography will start in both directions d0 = p0(F 0, 0) and d′0 = −p0(F 0).
For the further propagation direction, we set the eigenvector to be consistent
with the previous propagation direction. Hence, we define the propagation
field for t > 0 as

pi(x) =
{ pi−1(x) if di−1 · pi−1(x) > 0
−pi−1(x) else

(4.3)

This new field defines a velocity field where we set the fiber tract to be
parallel to the velocity field in every point of the fiber tract. Therefore, we
can relate the velocity field to the fiber tract.

p(F (t), t) =
∂F (t)

∂t
(4.4)

This differential equation defines an ordinary differential equation that gives
us the position of the tract at each propagation time t.

Several method exists in the scientific litterature to solve this kind of
equation and we can solve it to obtain a new tract position F i+1 from a
previous tract position F i. One common method used for equations that are
non-stiff, that is that their accuracy depends more on the step size than on
the truncation error of the method itself, is the Runge-Kutta method. As a
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complete explanation of the method employed would be too long, and since
it is already implemented in various libraries, we will refer the reader to [9,4]
for a complete explanation of it. However, we will give a detailed explanation
of its implementation to give an overall idea of how it works.

We are looking for the new velocity since it will directly give us F i+1 with
this simple equation:

F i+1 = F i +
∫ (i+1)∆t

i∆t
∂F (t)

∂t
dt

= F i +
∫ (i+1)∆t

i∆t
p(F (t), t)dt

(4.5)

The different technique presented will differ in the way the integral is approx-
imated. Hence, if we write the Taylor development of the fiber tract function
around ∆t we obtain:

F i+1 = F i + ∆t
∂F i

∂t
+O(∆t2) (4.6)

Therefore, we can directly approximate
∫ (i+1)∆t

i∆t
p(F (t), t)dt ≈ ∆t∂F i

∂t
= ∆t ·

pi(F i). Therefore, we have

F i+1 = F i + ∆tpi(F i) +O(∆t2) (4.7)

This choice corresponds to the Newton method or a first order Runge-Kutta
because of the O(∆t2). This method can give a good approximation given
that the stepsize is small enough. However, we will see how it could be
improved. If we continue the Taylor development, we obtain:

F i+1 = F i + ∆t
∂F i

∂t
+

∆t2

2

∂2F i

∂t2
+O(∆t3) (4.8)

If we take the same first step but we add a second step to adjust for the new
term, we obtain:

k1 = ∆t · pi(F i) (4.9)

k2 = ∆t · pi+ 1
2 (F i +

k1

2
) (4.10)

Here and after, since pi+x = pi for 0 ≤ x < 1, we will write k2 = ∆t · pi(F i +
k1

2
). If we develop this new term, we have:

k2 = ∆t · ∂F
i

∂t
+

∆t2

2
· ∂

2F i

∂t2
(4.11)
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and we can obtain our new point by this formula:

F i+1 = F i + k2 +O(∆t3) (4.12)

and the approximation error is O(∆t3). This is a second order Runge-Kutta
method . We can continue to develop the Taylor serie to reduce this error
even more. Hence, by taking these four steps:

k1 = ∆t · pi(F i)

k2 = ∆t · pi(F i +
k1

2
)

k3 = ∆t · pi(F i +
k2

2
)

k4 = ∆t · pi(F i + k3)

F i+1 = F i + 1
6
k1 + 1

3
k2 + 1

3
k3 + 1

6
k4 +O(∆t5)

(4.13)

the approximation error will be O(∆t5) and this method is called a fourth
order Runge-Kutta.

However, computing this coefficients for evey stepsize can take a non-
negilgible amount of time and as it is relatively easy to compute the fourth
order Runge-Kutta, computing every order above the fourth requires at least
more step than that order. This means that at least six steps are required to
compute the fifth order and that there is a computational limit to the order
of the method. Since the precision of the method depends on ∆t, if it was
possible to modify the stepsize to keep the approximation error O(∆tn+1),
below a certain value Errc, it would allow to take larger steps where the
approximation error is small enough. Hence we will have to monitor this
approximation error by a more accurate method. Therefore, while computing
F i+1 with a fourth order method, we will also compute it with a fifth order
method and we will assume the approximation error as being

Erri ≈ ‖F i+1
5 − F i+1

4 ‖L2 (4.14)

Since we expect the fifth order method to be more accurate, we will simply
assume that F i+1 ≈ F i+1

5 . Moreover since we do not want to calculate to
much coefficients (k1,2...), we will do it in such a way that both the fourth
order and the fifth order may be computed from those coefficients. Hence, if

43



we express the different steps as

k1 = ∆t · pi(F i)

k2 = ∆t · pi(F i + b21 · k1)

k3 = ∆t · pi(F i + b31 · k1 + b32 · k2)
· · ·

k6 = ∆t · pi(F i + b61 · k1 + b62 · k2 + b63 · k3 + b64 · k4 + b65 · k5)

F i+1 ≈ F i + c1k1 + c2k2 + c3k3 + c4k4 + c5k5 + c6k6

(4.15)
the coefficients for the fifth order and fourth order Runge-Kutta method are:

Coefficients of the 4th and 5thorder Runge-Kutta method
i bij c∗i (4

th) ci(5
th)

1 2825
27648

37
378

2 1
5

0 0
3 3

40
9
40

18575
48384

250
621

4 3
10

−9
10

6
5

13525
55296

125
594

5 −11
54

5
2

−70
27

35
27

277
14436

0
6 1631

55296
175
512

575
13824

44275
110592

253
4096

1
4

512
1771

j = 1 2 3 4 5

(4.16)

The method used to compute the next step size is simple. We can directly
note the error made at a given step as

Erri ≈ ‖F i+1
5 − F i+1

4 ‖L2 = ‖
6∑

i=1

(c∗i − ci) · ki‖L2 (4.17)

then

∆ti+1 = ∆ti · |
Errc

Erri

|0.2 (4.18)

which directly gives the step size to take if we have to recompute the iteration
because the step was too large or the step size we can take for the next
iteration.

4.2 Continuous interpolation of the tensor field

In the previous section, we assumed that we have a tensor field which is de-
fined continuously over the whole space. As with every discrete signal, this is
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usually not the case and some interpolation between each value must be done.
Nyquist showed that every signal S(t) with is Fourier transform Ŝ(ξ) that
was sampled at a sample rate 1

T
from a discrete signal can be reconstructed

perfectly to the original signal if it had a compact support in the frequency
domain which is smaller than half of the sampling frequency (see [16] for a
demonstration). In other word, Ŝ(ξ) = 0 if ξ > 1

2T
. If not, a spectral folding

will occur for all frequencies ξ > 1
2T

. However, such reconstruction uses sine
cardinals which has a slow numerical convergence. Hence, if it was possi-
ble to replace the sine cardinals basis by another basis which add a smaller
support, this could improve the computation time. We will therefore try to
finding a polynomial which is piecewise defined and that best fits the signal
we are trying to interpolate. [17] showed that such a polynomial that gives
the least error compared to the full nyquist reconstruction for a given region
of support and has the highest order of continuity is the B-Spline. [1] also
proposed it to the special case of tensor data. This interpolation method is
quite simple and consists of convoluating the signal with a box window. The
box window is convolved once for a first order polynomial, twice for a second
order, etc. as we can see in figure 4.2.
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Figure 4.1: BSpline coefficient for different orders

Moreover, in order to make good use of the precision of the tractography
method, some restrictions will have to be made on the order of the polynomial
used depending on the order of the tractography. Hence, if for instance the
tractography method is of the 4th order, meaning that the error is O(∆t5), we
will have to make sure the polynomial used has enough non-null derivatives
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to make good use of the precision of the method. Therefore, in this case, the
polynomial would have to be at least of the third order in order to have a
non-null third derivative. In this particular case, the reconstruction would
be perfect except where the third derivative in not continous, e.g. between
voxels. A practical way to avoid this problem is to stop between voxels to
allow tractography to continue in the next voxel. Another way is to use
a polynomial one degree higher so every term in the Taylor development
is continuous and the tractography can be performed across voxels. This
method solves the problem of finding the point at the boundary and the
adaptative step size scheme described in the previous section helps to keep
the error below a certain specified value. Therefore, for a fifth order Runge-
Kutta, the interpolating B-Spline will have to be a fifth order also.

Nevertheless, relating the B-Spline order to the order of the Runge-Kutta
method can give another indication on the limitation of this method. As
discussed in the previous chapter, the B-Spline tends to smooth the edges
because it is associated to a low pass filtering. Even if it helps to extract more
regular and continuous fibers, it does not mean that they are more accurate.
It could also have the effect of connecting two regions that were separated by
smoothing their edges. Some concerns about the magnetic resonance imaging
and the B-Spline approximation will also be discussed in the next chapter.

4.3 Termination problems in tractography and

tensor regularization

Diffusion tensor imaging is very different from any kind of scalar imaging in
a lot of situations and brings its own kind of problem that has to be adressed.
In the previous section, we assumed that the main and only diffusion direc-
tion is given by the direction of the eigenvector associated with the highest
eigenvalue. This is true in the ideal case of anisotropic diffusion but, as the
tensor goes farther from this case, some restriction must be made. When
eigenvalues are close to each others, even the smallest amount of noise can
affect greatly the direction of their eigenvectors. Such case of close eigenval-
ues can occur in sheets between membranes, when two fiber tracts cross each
others or in the most general case of noisy data. Therefore, in order to en-
hance the tractography and deal with the case of more uncertain direction [3]
proposed to insert a bias towards the previous direction in the tractography.
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As inserting this bias will make the tractography slightly go outward when
following a curve, we will have to insert it only where the tensor requires it.
Hence a measure of the anisotropy of the tensor must be introduced. Several
measures exist in the scientific litterature, and the one we will use is the
fractional anisotropy as proposed in [2]. It can be expressed easily from the
eigenvalues of the tensor

ν =

√
(λ1 − λ2)2 + (λ1 − λ3)2 + (λ2 − λ3)2

2 · (λ2
1 + λ2

2 + λ2
3)

(4.19)

However, diagonalizing a tensor every time we want to compute the fractional
anisotropy can be time consumming. Therefore, we will rewrite this formula
to

ν(x) =

√
3√
2

‖ε(x)− 1
3
trace(ε(x))I‖F

‖ε(x)‖F

where ‖ · ‖F is the Frobenius norm

(4.20)
As fractional anisotropy can be used as a good estimator to threshold white
matter from other tissue as we can see in figure 4.3, we will stop the tractog-
raphy whenever it goes below a critical value νl. As stated above, inserting
a bias makes the tractography go outward so no correction will be made if
the fractional anisotropy is over another critical value νh. We will therefore
modify the tensor field with a bias towards the previous direction:

εi(x) =
{ ε(x) + Cb · νh−ν(x)

νh−νl
· di ⊗ di if νl < ν(x) < νh

ε(x) else
(4.21)

where Cb is the magnitude of the correction bias. This could be seen as
inserting inertia in the propagation of the fiber.

The last regularization of the tractography performed is designed to pre-
vent a tract from a different tract to follow a new one without stopping it
with the fractional anisotropy criteria. Hence, if the radius of curvature of
the tract is too small meaning that we may have stopped to follow the initial
direction and we are now following a different tract, we end the tractography.

Using all the above regularization method, the tractography method de-
scribed in this chapter should be able to extract smooth and continuous fiber
tracts. However, as it was previously stated, even if the fibers displayed on
the screen is smooth, it does not mean it is accurate. Therefore, other regu-
larization scheme could be implemented to assure that the displayed fiber is
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Figure 4.2: Fractional anisotropy of a DTMRI slice

accurate to the measured diffusion tensors. For exemple, by assuming that
the tensor is the local representation of a manifold, a fiber tract would be de-
fined by the fastest path from point A to point B (see [12]). Another method
could be to choose fibers going from one region of interest to another region
of interest where the region of interest would be defined using histological
data (see [11]). This give an example of the possible improvement of the fiber
tractography method. Comparing the tractography method these two other
method could be interesting, and could be an interesting way to compare
how this method perform.
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Chapter 5

Implementation

This report covers various problems like filtering data and doing tractography
in a diffusion tensor field. Implementation of the solutions to these problems
requires many libraries and can be done in various environment. In this
chapter, we will see how the implementations of the solution to the two
problems were done.

5.1 The 3D-Slicer

The main software developed and used here at the Surgical Planning Labo-
ratory is the 3D-Slicer (<www.slicer.org>). This software integrates several
facets of medical imaging such as image filtering, extracting interesting fea-
tures inside an image (segmentation), aligning different data sets together
(registration) and volume visualization. I implemented the tractography
module in this software. For cross-platform purposes, it is written in the
Tcl/Tk scripting language (<www.tcltk.org>). In fact, since the develop-
ment environment is on various platforms (I worked mainly on Solaris but it
is developped also under Windows, Linux, Mac) and on different development
site (collaboration exist with universities and research laboratories in Ger-
many, Sweden, Poland ...) the developper of the 3D-Slicer needed to totally
abstract the operating system from the programmation. The use of a script-
ing language makes it possible as interpreters exists on various architectures.
It also uses a cross-platform visualization environment named the Visual-
ization Toolkit (<www.vtk.org>). This toolkit consists of a set of libraries
and classes written in c++ to give the developer a level of abstraction over
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other graphical libraries like OpenGL. Since it needs to be cross-platform,
the c++ classes are compiled with cmake (<www.cmake.org>) which is a
cross-platform make program. It also automatically wraps Tcl/Tk around
those classes which makes it possible to create dynamically loadable libraries
from the vtk classes and use them directly inside the Tcl/Tk scripts as it is
needed.

From an architectural point of view, since several version of the slicer are
maintained (releases, developing versions and other versions using specific
modules) the slicer is developed in a modular point of view. There is a
base module which consists of the main program of the slicer and several
other modules written by different research laboratories. This modularity
helps to maintain the overall program working even if a specific module
does not. Every module is written in Tcl/Tk and may have a dynamically
loadable library of vtk classes and it is compiled through cmake. I worked
primarily on three different modules to implement the tractography method.
The first one is the Tensor Utility module developed and maintain by the
Laboratory of Mathematics in Imaging (<lmi.bwh.harvard.edu>) which is
the laboratory I was working in. This module contains several classes which
deals with tensor data, tensor mathematics and imaging. I put all the classes I
developed inside this module except one that needed a special library to work.
Since this module does not have a loadable graphical interface, I created the
graphical interface of the tractography method which is the DT-MRI module
also developed at the LMI. As its name says it, this module groups all the
tools to work on the diffusion tensor magnetic resonance imaging. It already
contained a tractography tool and it was natural to put it there. The last
module used is the ITK module. ITK stands for Insight Segmentation and
Registration ToolKit. It is a library that contains several classes to work on
medical images, data and signal analysis. Therefore, it offers numerous filter,
segmentation and registration classes. Even if this library is not officially
required by the 3D-Slicer to compile, many modules use it through one way
or another. I used the BSpline filter class of this library but, since neither
the DTMRI or the Tensor Util modules uses ITK directly, I had to put it in
the ITK module which is mainly a VTK interface to the ITK filters.
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5.2 Implementation of the filtering method

Since the DT-MRI data is saved in a known file format, several functions to
read it into other software like Matlab were written to be able to test and
implement new features. Therefore, it is not necessary to implement directly
in the 3D Slicer the algorithms that would require libraries that are not
available as part of the developing environment of the 3D Slicer. This is the
case for the filtering technique where no wavelet transform is available inside
ITK. However, a wavelet toolbox is available inside matlab and many other
features, allowing more effective testing, since no compiling is needed to run
a Matlab function. Moreover, since the data need to be filtered only once,
it could be saved to disk once and read back into the slicer for later use.
Therefore, Matlab was a good choice to implement the filtering technique
with the time constraint of this internship.

5.3 The Tractography Module

As described above, a tractography tool was already available in the DT-
MRI module. However, this tool used a second order Runge-Kutta method
with only a linear interpolation of the tensor only and did not allow any
higher order to be used. It was also using the eigenvalue of the propagation
direction as a termination value for the tractography which might be really
noisy. Moreover, finding a good termination eigenvalue for a tensor might be
very difficult as it might be different depending on the trace of the tensor and
may lie on a range around 10−6. Therefore, too much analysis of the data
was needed to set a good termination eigenvalue and another termination
value was needed. Since all this was written inside a class available as part of
the main vtk library, I had to write new classes to perform Tractography. We
can see on figure 5.1 the collaboration diagram of the classes I implemented.
The “vtk” prefix is omitted for purpose of clarity.

As we can see on figure 5.1, there are two parts in this module. The
first part is the preprocessing of the B-Spline coefficient from the tensor data
before starting the Tractography. Since the ITK class could not directly han-
dle tensor data, I had to separate it into six differents scalar components.
Afterward, it could be filtered by the ITK class named BSplineDecomposi-
tionImageFilter. The result is stored in a class named vtkBSplineInterpo-
lateImageFunction. This class can be questionned about the BSpline value
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Figure 5.1: Class Diagram of the Tractography Module
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at any point x and it will give the result as a scalar function. The vtkIm-
plicitFunctionToFunctionSet does this for every scalar value and is in charge
of reconstructing the tensor data, computing its fractional anisotropy and
outputing the propagation direction at this given point x.

The second part of the module is the one in charge of building a stream
line, or a fiber tract, from a starting point x. In the chapter on tractography,
we defined a way to solve an ordinary differential equation like 4.4. The
method described is implemented in a VTK class named vtkRungeKutta45
which inherits from a more general class to solve ordinary differential equa-
tions named vtkInitialValueProblemSolver. Therefore, I wrote a class that
could use this class to solve the problem 4.4 and which would stop whenever
a termination value is reached.

We can see the graphical interface of the DTMRI module on figure 5.2.
It shows a tensor volume with glyphs showing the principal diffusion direc-
tion. The color coding corresponds to the fractional anisotropy where red
is the highest and blue is the lowest. To do tractography, the user must
first load a volume inside the slicer. Then he must convert it from scalar
data to tensor data. If he specified that he wants to use a B-Spline inter-
polation, the B-Spline coefficients are computed at this time. As stated in
the previous chapter, since drawing continuous fibers does not automatically
mean drawing accurate fibers, many options was included. Therefore, the
user can choose the order of the tractography method and the order of the
B-Spline. Then he can set the tractography option. Those options are shown
on the left window on figure 5.2. He can start a stream line by pointing with
the mouse on the picture where he wants to start it and by hitting the ’s’
button. However, segmenting the whole white matter by doing tractography
can get quite long. Therefore, some tools to do automatic tractography were
included inside the 3D Slicer. The first thing to do is to define a region of
interest, which specifies the fibers we would like to extract. As an example,
we will segment the corpus callosum. Afterward, the user can easily select
start autotracking which seeds a stream line in every voxel of the region of
interest. A result of this tractography can be seen on picture 5.3.

There exist different way of improving this implementation. The first one
might be to use a different order for the BSpline along the different dimen-
sions. For example, in the example used in figure 5.3, the volume dimension
were 256 x 256 x 24 and the voxel size was 0.859375 x 0.859375 x 4.0 mm.
Therefore, the first two dimensions have a much more higher resolution than
the third dimension. Using a fifth order B-Spline along the first two dimen-
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Figure 5.2: Graphical Interface of the DTMRI module
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Figure 5.3: A reconstruction of the corpus callossum using fiber tractography

55



sions could still be accurate but using it along the third dimension mean
that the region of support of the BSpline kernel will be 5 · 4.0 mm = 20.0
mm wide which is quite large. The approximation could be improved by
using only a linear interpolation or first order B-Spline along this dimension.
The overall kernel size of the B-Spline approximation would have been of
(5 · 0.859375 = 4.296875) x 4.296875 x 4.0 mm. However, the ITK class do
not allow to use different order for the BSpline along particular dimension.
It could have been an interesting feature to develop.
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Chapter 6

Discussion

More than studying the regularization of tractography, one of the goals of
this internship was to apply my knowledge inside a research environment.

As for the first part of this goal, I think this internship was beneficial on
many points. Of course, I had the chance to study a problem that had to
be treated on an applied mathematic and a computer science point of view
but I learned a lot from the environment I was working in. In my courses
at the Ecole Polytechnique, programs were at most a few thousand lines of
codes and I never had the chance to work on a project which involved a large
number of developper. Hence, here I had the chance to work on a much more
integrated environment, on a much bigger software where nobody except
maybe a few people knows every detail of the implementation of it. Even to
start working in this environment, I had to learn how to use cmake to compile
my own version of the software, the basics of Tcl/Tk and VTK. Luckily, those
libraries are all open source highly documented libraries with examples for
every class provided. Nevertheless, understanding how everything works and
just writing my first “hello world” class which just write hello world in Tcl/Tk
shell took some time as I had to modify the cmakefile, understand what is
needed in a vtk class. And, even if a lot of documentation is provided, I had
to check several times what is really done inside a class during long debugging
sessions which made me appreciate the fact that I have access to the source
code of the library. I also had the chance to understand the difficulty to write
software for different platforms at the same time when I received an e-mail
form one of the main developers saying that my code was compiling under
solaris but not under windows. I understand now the choice of using vtk,
tcl/tk and cmake to help building a cross-platform environment. Complying
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with there standards was sometimes painful but as their requirements insure
a minimum of portability across different windowing systems, it is sure worth
the hassle.

Moreover being cross platform, using VTK as the visualization library
provided interesting feature like its garbage collecting capabilities. I did not
had the chance to use it, but it also provide easy threading functionality
where using thread or not is only defined as a flag when loading a module.
However, all those features come at a cost. Since it is all implemented using
the polymorphism capabilities of c++, it is very easy to use but you never
know which class you are really working on. I had a lot of difficulty to
figure out how the data is represented in memory and this brought a lot of
difficulties when trying to create a pipeline for the data from VTK to ITK.
However, I understood the difficulty of writing software which his much more
difficult than writing a little program that implements a few thousand lines
of code.

More than working on an interesting project, working in a team of re-
searchers was also really interesting. Since I plan to continue during my
fourth year of study of the Ecole Polytechnique in biomedical imaging, this
internship was a great opportunity to discover the field and have an intro-
duction to its major problems and paradigm. Hence, I had the chance to
attend conferences given by researchers about their work in this subject and,
just by speaking with people around me, obtain a good introduction about
what could be done inside the different subfields. Since I planned to make my
internship last more than the recommended three months, I was also given
the chance to explore a problem in a more complex way. Finally, the Sur-
gical Planning Laboratories offers facilities where developers of the 3D-slicer
software work with those who use it. Therefore, I also spoke with medical
students performing research and using the software that was developped. I
could then see what their point of view is and learn more about the medi-
cal research. The working environment therefore offered a stimulating and
interesting research environment.
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Chapter 7

Conclusion

In this internship, I had the chance to study the regularization of fiber trac-
tography, an application of DTI, which permit a full reconstruction of the
inner structure of the white matter by following fiber tracts in a water diffu-
sion tensor map. I implemented a fully working fiber tractography module
with many regularization schemes ranging from noise filtering to augment-
ing the continuity of the reconstructed fibers. I also implemented a novel
noise filtering technique for regularizing information in magnetic resonance
signals. In the end, the overall tractography module helped to extract con-
tinuous fibers from the white matter and allowed full reconstruction of the
connective architecture of the human brain.

This internship also offered me a great opportunity to have an overall
introduction to the biomedical imaging field and to see what are the op-
portunities in this field. The module I developped gave me a good idea of
what it is possible to do using in-vivo imaging instruments and what kind of
information could be extracted. However, a lot of question is still left unan-
swered in this report before the fiber tractography module could be used as
a diagnostic tool on real patient. For example, it could be interesting to
find a criteria on when we can “merge” two fiber tracts tips if they represent
two fibers which seems to be connected. It could be interesting to see if it
was possible to measure the connection strength between two different region
inside the white matter instead of just counting the number of fiber tract we
were able to draw from those two regions. These are example of interesting
problems that could help improve the fiber tractography module. It shows
of how exciting is the problem that was discussed in this report and how
promising are every develpment inside this field.
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