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Abstract. A novel fully automatic procedure for brain tissue classifica-
tion from 3D magnetic resonance head images (MRI) is described. The
procedure uses feature space proximity measures, and does not make
any assumptions about the tissue intensity distributions. As opposed to
existing methods, which are often sensitive to anatomical variability and
pathology (such as atrophy), the proposed procedure is robust against
morphological deviations from the model. Starting from a set of samples
generated from prior tissue probability maps (the “model”) in a stan-
dard, brain-based coordinate system (“stereotaxic space”), the method
reduces the fraction of incorrectly labeled samples in this set from 25%
down to 5%. The corrected set of samples is then used by a supervised
classifier for classifying the entire 3D image. Validation experiments were
performed on both real and simulated MRI data; the Kappa similarity
measure increased from 0.83 to 0.94.

1 Introduction

Fully automatic, accurate, and robust brain tissue classification1 from anatom-
ical magnetic resonance images (aMRI) is of great importance for research and
clinical studies of the normal and diseased human brain. Operator-assisted seg-
mentation methods are impractical for large amounts of data, and also are highly
subjective and non-reproducible [1].

Existing methods for fully automatic brain tissue classification typically rely
on an existing anatomical model. This makes them sensitive to any deviations
from the model due to pathology, due to aging, or simply due to normal anatom-
ical variability between individuals. Also, there may be situations when the only
model available was constructed from a different human population than the im-
age to be classified. Moreover, many of the published feature-space classification
methods assume multi-variate Normal (Gaussian) tissue intensity distributions.
It has been shown that this is a poor assumption for multi-spectral anatomical
brain MRI [2, 3].

1 In the context of this paper, “classification” means the labeling of individual image
voxels as one of the main tissue classes in the brain: cerebro-spinal fluid (CSF), grey
matter, and white matter; a fourth class (“background”) denotes everything else.
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sample MRI: CSF TPM: Grey-matter TPM: White-matter TPM:

Fig. 1. All 3D image volumes are spatially registered to the same stereotaxic space.
The tissue probability map (TPM) values range from 0 (black) to 1 (white).

The MRI intensity scale has no absolute meaning, and is dependent on the
pulse sequence and other variable scanner parameters. An aspect that is ignored
by most brain MRI intensity-based classification schemes is the fully automatic
generation of a correct set of training samples for the classifier, when given a
never-seen-before MRI brain dataset. Existing approaches to fully automatic
classification include:

– EM-style schemes were proposed by Van Leemput [4] and by Ashburner [5].
Both use a probabilistic brain atlas to initialize and constrain the tissue
classification. However, both authors report failures on atypical (significantly
different than the atlas) brain scans, such as child or pathological brains.

– The use of stereotaxic space tissue probability maps for automating super-
vised classification algorithms was originally proposed by Kamber [6], and
subsequently used by other researchers [1, 7]. The maps are used to select
training samples from spatial locations that are very likely to contain a given
tissue type. This approach’s limitations are described in the next section.

The main contribution of this paper is a novel method for fully automatic
generation of correct training samples for tissue classification. The method is
non-parametric, hence does not make any assumptions about the feature space
distributions. It is based on a prior tissue probability map in stereotaxic space
(the “model”), and is designed to accommodate subject anatomies that are sig-
nificantly different than the model.

2 Problem Statement

A stereotaxic space tissue probability map (TPM) of a given tissue is a spatial
probability distribution representing a certain subject population. For each spa-
tial location in a standard, brain-based, coordinate system (stereotaxic space),
the TPM value at that location is the probability of the given tissue being ob-
served there, for that particular population.
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Once imaging data is spatially registered (normalized) to the stereotaxic
space, TPM-s provide an a-priori spatial probability distribution for each tissue
(Fig. 1). This distribution can be used to automatically produce a training set
for the supervised classifier [6]: for example, choose spatial locations that have
a TPM value ≥ τ = 0.99 (99%). The lower the τ , the more qualifying spatial
locations there will be. However, this simplistic approach has two limitations:

1. Mis-labeled samples (“false positives”): Since the morphology of the human
brain is so variable, even among the locations with very high a-priori probability
of being a given tissue, some of them will be wrongly labeled as one tissue class
when in fact they are from another class. The fraction of false positives in the
training set will increase when τ is decreased. Also, for a given τ , this fraction
will be larger when the subject is from a different population than the population
represented by the TPM.

2. Intensity distribution estimation: For highest τ (where the false positive rate
is lowest) the qualifying sample points give a very limited coverage of the brain
area, especially for CSF (Fig. 1). Intuitively, this will not give a good estimate of
the true tissue intensity distributions (which is needed by a supervised classifier),
for two reasons:

– Brain tissue, as seen in aMRI, is not homogeneous throughout the brain [8].
– MRI artifacts, such as intensity non-uniformity (INU), introduce additional

spatial variations in the measured tissue signal.

Thus, sampling at a lower τ would be beneficial for the intensity distribution
estimation; however, a lower τ also means more false positives.

Our novel contribution is a way to address these two limitations. Specifically,
a “pruning” of the raw set of points obtained from the TPM is performed, with
the goals of eliminating the false positives caused by anatomical difference, and
of allowing for a lower TPM τ . The only requirement for the TPM is that the
majority of training points it provides, for a given τ , are correctly labeled.

3 Method

The following presents a fully automatic, non-parametric, brain tissue classifi-
cation procedure based on feature space proximity measures. Non-parametric
classifiers are attractive because they do not make any assumptions about the
underlying feature space data density functions. The procedure consists of two
stages:

1. A semi-supervised classifier, using a minimum spanning tree graph-theoretic
method, and stereotaxic space prior information. It produces a set of train-
ing samples customized for the particular individual anatomy subjected to
classification. This stage will be referred to as the “pruning” stage.
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2. A supervised classifier, using the classic k-nearest-neighbor (kNN) algo-
rithm [9]. It is trained on the set of samples produced by the first stage.
In this work: k = 45, and the classifier had > 3000 training points per class.

The image features used are only signal intensities of one or more MRI modalities
(contrasts). The feature space proximity measure used is the common Euclidean
distance in d-dimensional space. However, for d > 1 the Euclidean distance is
not invariant to independent scaling of the different axes, and the MRI scanner
raw output has no absolute nor guaranteed scale. This problem is addressed by
a pre-processing step that normalizes the intensities of the input multi-spectral
MRI-s. A simple intensity histogram range-matching procedure is used: points
located at a small percentile away from the absolute minimum/maximum of the
histograms are matched between MRI modalities.

3.1 Pruning stage

The pruning works on a set of input sample points that are selected through
random sampling from the qualifying locations in the respective tissue proba-
bility map (TPM); an equal number of samples is selected for each tissue class
(background, CSF, grey matter, white matter). The qualifying locations are lo-
cations where the TPM value (i.e. the prior probability) is ≥ τ , where τ is the
threshold parameter.

The pruning technique makes use of a minimum spanning tree (MST) in
feature space. This method is referred to as “semi-supervised” because, unlike
in traditional unsupervised classification (“clustering” techniques), some prior
information exists in this application: the number of main clusters, and their rel-
ative position in feature space is known. Furthermore, each sample point has an
initial labeling suggested by the TPM-based point selection process (section 2).
The purpose of the pruning is to reject the points with incorrect labeling.

Here are the three main steps of the pruning method:

1. The minimum spanning tree of the input set of points is constructed in
feature space (Fig. 2).

2. Iteratively, the graph is broken into smaller trees (connected components, or
clusters) by removing “long”, or “inconsistent”, edges from the initial MST.
At each step, the main clusters are identified and labeled by using prior
knowledge, and a stop condition is tested on them. If the condition is not
satisfied, the graph breaking is continued.

3. At the end, the points that are in the right cluster (i.e. have the same initial
labeling as their cluster) are deemed to be true positives and kept; all the
other points are deemed to be incorrectly labeled and discarded.

MST breaking: A heuristic method (inspired by [9]) was implemented and exper-
imentally evaluated (section 4). It uses a threshold value T , which is decreased
at each iteration of the algorithm and tested on all edges of the graph in parallel:

– an edge (i, j) is removed if length(i, j) > T×A(i) or if length(i, j) > T×A(j),
where A(i) is the average length of all the other edges incident on node i.
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Fig. 2. Left : minimum spanning tree (MST) of a set of points in the plane. Right : the
result of removing the “inconsistent” edges (section 3.1), for a T = 1.45 .

Main clusters identification: The main clusters are the best guesses for the true
background, CSF, grey matter, and white matter clusters in feature space. Under
the assumption that the majority of points have correct initial labels, the best
guess for each class is the cluster which contains the largest number of points
labeled as that class.

Stop condition: If the above determined main clusters are found to be four
distinct clusters, and the relative cluster locations in feature space correspond
to prior knowledge, the iterative graph breaking stops.

4 Experiments and Results

Experiments were performed in order to validate the training set pruning method,
and also the entire brain tissue classification scheme proposed here. All experi-
ments were performed with repetitions, for assessing the statistical significance
of each resulting data point. The performance on both subject brains similar to
the TPM used and, more importantly, on brains with significant morphological
differences from the TPM, was explored using the following MRI datasets:

1. Realistic simulations [10] driven by a new custom set of “phantoms” (digital
anatomical models) resembling elderly brains. These phantoms were pro-
duced using a non-linear spatial registration procedure between real MRI-s
of elderly subjects (aged 60-70) and a standard anatomical model [10]; the
resulting deformation field was inverted and used for deforming the stan-
dard phantom. Multi-spectral MRI-s (T1, T2, PD) were simulated as 1mm3

isotropic voxel acquisitions, with 3% noise and 20% INU (intensity non-
uniformity).
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[A] Simulations (elderly brain phantoms): before, and after
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[B] Real dataset (young-normal): before, and after
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Fig. 3. Multi-spectral aMRI (T1-T2-PD) operation: false positives fraction (FPF) in
the point set. [A]: 10 repetitions, each with a different phantom (anatomical model).
[B]: 10 repetitions, each with a different initial point set. It can observed that for
all experiments the pruning significantly reduces the FPF. The results for T1-only
(single-feature) operation are similar.

2. Real T1-T2-PD scans of a young normal individual (aged 36), 1mm3 reso-
lution. INU correction was performed using MNI-N3 [11]; the different ac-
quisitions were spatially normalized to each other using a linear (affine) reg-
istration procedure. The head T1 scan was completely manually segmented
(except the cerebellum) by a human expert – a trained neuroanatomist.

3. Real multi-spectral scans of 31 ischemia patients, who exhibit brain atrophy.
T1: 1mm3 resolution; T2/PD: 1x1x3.5mm resolution; same processing as
for 2 above. Only a qualitative evaluation was performed on these data.

For the quantitative measurements (on 1 and 2 above), the “gold standard” was
the anatomical model used for the simulations, and the manual classification
for the real dataset. For each pruning experiment, 7500 candidate points per
class were selected based on the TPM-s (section 3.1); the TPM-s used were
produced [7] from a group of 53 young normal subjects (aged 18-35).

An intuitive figure of merit for the pruning method is the rate of false positives
(mis-labeled samples) left in the point set. A low such rate is desired in the
pruned point set, as it corresponds to a “mostly correct” training set for the
final supervised tissue classification stage (Fig. 3).
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Simulations (elderly brain phantoms): Real dataset (young-normal):
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Fig. 4. Multi-spectral aMRI (T1-T2-PD) operation: final classification Kappa (repeti-
tions same as Fig. 3). Left: the pruning gives a clear improvement over the “raw” (no
pruning) operation. Right: for τ ≥ 0.7, the pruning produces a small, but statistically
significant, improvement over “raw” (box notches do not overlap: p < 0.05).

However, it is more important to study how the pruning influences the final
tissue classification result. For a quantitative measure of performance, the Kappa
measure (a chance-corrected similarity measure between two labelings [12]) was
computed against the gold standard, over the intra-cranial area. For comparison,
Figs. 4-5 also show the result for an experiment with τ = 0.99 and no pruning
(“raw”) [7]: the final kNN classifier was simply trained with the raw samples
extracted from the TPM at τ = 0.99.

5 Discussion and Conclusion

Based on the experimental results presented above, it can be concluded that
the MST-based pruning method achieves its goal of reducing the rate of mis-
labeled samples in the point set selected using the TPM-s. Moreover, the pruning
improves the final tissue classification compared to the “raw” method. This
improvement is substantial for some ischemia patients (Fig. 5).

Limitations: Not all of the false positives are “pruned”, and part of the true
positives in the original training set are discarded as well. The cause of this is
the partial overlap of the tissue class distributions in feature space – an inherent
limitation of anatomical brain MRI.

This paper describes a fully automatic procedure for brain tissue classification
from MR anatomical images. As opposed to existing methods, it does not make
any assumptions about the image intensity distributions, or about the close
morphological similarity between the subject’s brain and the anatomical model.
This procedure (which can operate on both single-spectral and multi-spectral
aMRI) will provide improved tissue segmentation for research and clinical studies
of the development, functioning, and pathology of the human brain.
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T1 MRI T2 MRI PD MRI τ = 0.99 “raw” τ = 0.90 pruned

Fig. 5. Real dataset (ischemia patient): multi-spectral aMRI, and classified images
(the different gray levels correspond to the different tissues). This subject exhibits
severe brain atrophy (i.e. significant morphological difference from the “young normal”
model), which is the likely cause for the poor performance of the “raw” method (no
pruning). The pruning method, for τ = 0.90, gives significantly better classification.
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