
Java Internet Viewer: a WWW Tool for Remote

3D Medical Image Data Visualization and

Comparison

Chris A. Cocosco and Alan C. Evans

McConnell Brain Imaging Centre, Montreal Neurological Institute,
McGill University, Montreal, Canada
email: crisco@bic.mni.mcgill.ca

March 2001

Abstract. A powerful, robust, portable, and extensible Java application
(JIV) was developed for visualization and side-by-side comparison of
multiple 3-dimensional medical image datasets. It works well through the
World Wide Web (WWW), it only requires a common Web browser, and
can cope with slower networks and less capable workstations. Moreover,
JIV provides features and a level of performance usually only found in
traditional stand-alone applications. Design choices and considerations
of interest to any WWW medical image visualization tool are presented.

1 Introduction

There is a growing need in the medical imaging community for Internet-capable
tools that facilitate remote data dissemination and interaction. Large scale,
multi-site, research projects and clinical trials require means for a geographi-
cally dispersed scientific and clinical community to interact and examine medi-
cal imaging data via the Internet [2]. Such 3-dimensional (3D) medical imaging
data typically requires special-purpose, non-portable, software to be installed
and maintained on the local workstations. The World Wide Web (WWW) tech-
nologies have potential for improving this [3, 9, 20]. Below we will present our
work on Web tools for 3D medical image data visualization and comparison.

2 Background

The chief advantage of accessing the data and software directly from a remote
server (via Internet) is the ease of propagating updates: the user always and
transparently gets the most recent versions. There are three main elements in
this model: 1. the server, where the data (and software) reside; 2. the client
workstation, operated by the user; 3. the network connecting the server and the
client (usually in different geographical locations). The main design decision for
any remote imaging data visualization tool is how should the computing work
be divided between the server and the client workstation; also, how should the



network data transfers be done. An important consideration is the network’s
performance; in practice the transfer rate can vary by up to three orders of
magnitude (1000x). Furthermore, regular Internet connections currently cannot
guarantee a certain performance (or QOS: “quality of service”). Another consid-
eration is the client workstation capability: the available RAM and the processor
speed can vary in practice by an order of magnitude.

2.1 An initial prototype

A convenient way to visualize 3D medical imaging datasets is by three orthogonal
2D slices (usually: transverse, sagittal and coronal) through the same location
in the volume. When several image volumes are to be compared, it is desirable
to visualize their slices side-by-side, all at the same position in the volume.

We implemented an initial prototype of a WWW medical image volume
viewer using only HTML version3 — HTML “forms” and clickable images for
user input, and a CGI application on the server. This design places practically
all the computation on the server; the client needs only a basic Web browser.
This prototype is available online [5], and a snapshot of its interface is in Fig. 1.

However, this solution has many limitations. First, the HTML forms have
only basic user interface capabilities. Secondly, this approach is completely de-
pendent on server response time and on network speed. Overall, this prototype
is not interactive enough: the user cannot quickly “roam” through the 3D image
volume. Its sole advantage is that it does not require many computational re-
sources on the client workstation; any computer that can run a Web browser will
suffice. However, this is becoming less and less important as ordinary PC-class
workstations get more and more powerful.

The above limitations can be addressed by running a Java “applet” in the
client Web browser (also shown by others[8]), and by employing a fast Web server
implementation for providing the data (such as [22, 21], which uses a parallel
cluster of servers and disks). Even so, as long as the images are downloaded only
when actually required, and the client and the server are not inside the same
Local Area Network (LAN), the network speed still limits proper interactive
usage [11, 10].

2.2 Other work

Several Java applets for remote medical image and atlas visualization have been
reported in the literature [11, 10, 22, 21, 12, 4, 7, 16, 15, 1, 13, 14]. Most of them
have limited functionality and use little of the computational potential of a Java
applet (notable exceptions are [11, 10], and [16, 15]). In all of these, the slice im-
ages are downloaded to the client workstation only when and if required — thus
the interactive performance is unsatisfactory when used through remote Internet
connections. Given modern PC workstations and Java execution environments,
more computation can be moved from the server to the client. In addition, the
server-intensive model does not scale well for a large number of concurrent users.
In order to minimize the amount of data transfered through the network (and

2



Fig. 1. Screenshot of the initial prototype (HTML-3 forms & CGI). All position cursors
(cross-hairs) are synchronized/cross-referenced. The 3D volumes to be displayed, and
their relative ordering, are selected from the table at the bottom of the web page

thus minimize the download time on a slow network), many of the above projects
use JPEG compression for the 2D slice images. We believe this is not appropriate
in a medical imaging context because the JPEG encoding is lossy: it does not
preserve the original data intact, hence introducing artifacts in the image.

Overall, none of these applets offer capabilities similar to the typical stand-
alone medical imaging visualization tools available for traditional (non-Web)
local use. For example, none supports side-by-side simultaneous visualization
of several image volumes, each with three cross-referenced orthogonal 2D slice
images, nor do they offer useful features like colormap adjustment. It was the goal
of the work we present here to try to address these shortcomings and produce a
Web application that is comparable to traditional stand-alone tools.

3



3 Design & implementation

This section presents some design and implementation issues that arose during
the development of our Java Image Viewer (JIV). Java (version 1.1) was an easy
choice for the implementation environment: to date, it is the most portable soft-
ware development language; Java applets require no installation and no main-
tenance on the workstation; the vast majority of computers come with Web
browsers, and most of these browsers support Java 1.1 . JIV’s design places
most of the computation on the client; the Web server only has to supply the
original data files.

3.1 Data transfer

We use a simple and platform-independent data format for the 3D image data
read by JIV: a stream of byte values (8-bit) for the voxel intensities, accompanied
by a “header”: a plain text file containing ancillary information (described in
Table 1). Non-isotropic voxels are resampled at load time (in the applet) to an
isotropic grid, by simple voxel replication. This minimizes the data to download,
and it trades applet memory for increased interactive performance.

Table 1. Content of the 3D image data file’s header (inspired by [19, 18])

(order of dimensions) the order in which the file scans the data volume —
e.g. (z, y, x) means the x coordinate changes fastest

(sizex, sizey, sizez) volume size (number of voxels) along the x, y, z axes
(stepx, stepy, stepz) step values (can be + or -) along each dimension axis
(startx, starty, startz) distance from origin to first voxel along each dim. axis
(dircosx, dircosy, dircosz) unit vectors of the positive direction of each dim. axis

The voxel data file is compressed using the standard (lossless) utilities gnuzip
or bzip2. An approximate file size reduction achievable by gnuzip for typical
volumes is: 20% for individual anatomical MRI, 35-50% for MRI population av-
erages, 90% for segmented data. bzip2 achieves a further 25-45% improvement
in compression ratio over gnuzip. However, bzip2 compressed data takes longer
to uncompress and requires more working memory in the client1. It is impor-
tant to note that these compression algorithms are not designed specifically for
medical images; special-purpose algorithms should provide better compression.

The most important decision is how and when to download the 3D image
data; the following three operation modes are supported by JIV:

1. All up-front: all of the data is downloaded and stored in client’s memory
before the user can view and interact with any of it.

2. On demand: download slice image data only when and if the user wants to
view that particular slice number.

1 The actual bzip2 performance impact is yet to be determined (work in progress).

4



3. Hybrid (background download): first download only the slices required for
the initial cursor positions; then continue downloading all of the data in a
background thread (as in (1)); if the user requests slice images which are not
already downloaded, they will be downloaded with priority (as in (2)).

Mode (1) guarantees the best interactive response of the viewer; however, the
user has to wait for all the data to download before the JIV interface becomes
available – this can take a long time on a slow network link. Mode (2) minimizes
the data downloads and amount of memory required by the applet (see section 4),
but, like for previous work mentioned in sections 2.1 and 2.2, its interactive
response time is completely dependent on the server and on the network.

Mode (3) is the best compromise for most situations. Our implementation
does not temporarily freeze while waiting for data to arrive: instead, it displays
a discernible pattern for the image areas it does not yet have 2.

3.2 Graphical User Interface

We used the same visualization approach introduced by [17], while extending
the capability to an arbitrary number of volumes. For screen-shots of the JIV
graphical user interface (GUI), see Figs. 2, 3, and 4.

The 8-bit image intensity data is displayed using a user-controlled colormap-
ping, composed of a color-coding scheme (in between adjustable lower and upper
limits), an “under” color, and an “over” color. An intuitive user input scheme
(inspired by [17]) is used inside the 2D slice viewports — two mouse buttons
combined with a modifier key is all that is needed to: relocate the position cursor,
zoom and pan. The zoom factor can be adjusted to arbitrary values. There is also
an in-slice distance measurement mode, completely mouse-controlled. Nearest-
neighbor interpolation is used for image scaling (zoom), because it is fast to
compute and it does not artificially improve the image data — for discrete data,
smooth interpolation will show data that is not actually there in reality.

4 Results

JIV (available online [6]) can be run either as a Java applet (by means of a
Web browser or applet-viewer), or as a stand-alone Java application. It is robust
(unlike some of the other tools mentioned in section 2.2)3. It was tested and used
on a variety of computer platforms: it works well with common Web browsers
and with applet-viewers on Linux i386, on SGI IRIX, on MacOS (PowerPC),
and on the various MS Windows (Win32) versions. The implementation follows
closely the Java object-oriented, image/events passing models; this makes it easy
to further expand and reuse the code.

2 Modes (2) and (3) are work in progress as of this writing.
3 The likely reason for this is the immaturity of current Java development tools and

run-time environments

5



Fig. 2. Screenshot of the JIV (Java) interface. Four datasets are displayed side by side,
each with the common three orthogonal 2D slices. The world-coordinates position of
all the cross-hair cursors is synchronized. Some of the slices are zoomed-in (differently)

The interactive performance, defined as screen update time following user
input, is good when JIV is running on recent PC hardware (as of this writing) and
with enough memory (RAM) – see below for a memory requirement estimate. It
is worth mentioning that various Java execution environments (JVM, for “Java
Virtual Machine”) span a wide range in terms of execution speed. We find the
JIV interface (as shown in Figs. 2, 3, and 4) to be useful for efficient comparison
of multiple 3D image datasets.

If all of the image data is to be downloaded and stored by the applet, JIV’s
main short-coming is its large resident memory (RAM) requirements: for exam-
ple, for data volumes of 181 × 217 × 181 voxels, every loaded volume requires
8–9 Mb of memory. Additional memory if required by the JVM, and by internal
JIV screen buffers. However, modern PC-s usually have enough RAM for sev-
eral data volumes. If this is not the case, a possible workaround is to configure
JIV to only download image slices on an as-needed basis. If only a low-memory,
slow, workstation is available, then the HTML/CGI application presented in
section 2.1 might provide a workable solution. But both these approaches will
likely hamper the interactive performance because regular Internet connections
currently cannot guarantee a certain quality of service.

6



Fig. 3. Sample JIV application: evaluating the tissue classification (segmentation) of
a simulated MRI image volume. The merged view (center) can be used to visualize
the (semi-transparent) color-coded segmentation on top of the MRI image. The image
merging is computed in RGB color space by: colorvol 1× (1−β)+ colorvol 2×β, where
β is in 0.0–1.0 (user-controlled by the slider underneath)

Applications: See Figs. 3 and 4 for sample uses of JIV. It is a convenient and
platform-independent software for the remote visualization of 3D medical image
data. JIV is useful in remote data processing, such as when data goes to a cen-
tral, well-equipped, site for image processing and storage. Then various remote,
geographically dispersed, users can use JIV from common PC-s to visualize,
evaluate and otherwise use the data stored in the central image database. As
an example, it is used routinely in a currently ongoing, NIH-funded, large-scale
project to study normal human brain development (the McConnell Brain Imag-
ing Centre in Montreal hosts the central image database). This software allows
simultaneous visualization and comparison of a large number of image volumes,
hence it is even used locally within our lab. Other applications are possible in
scientific fields that deal with 3D image datasets: biology, geology, physics, and
so on.

5 Conclusion

JIV provides a powerful, robust, portable, and extensible 3D image data viewer
in the form of an applet which can be run straight from the WWW using a
common Web browser. The software can be configured to work reasonably well
even with slow networks and less than state-of-the-art workstations.

Acknowledgements Peter Neelin for many design suggestions and advice. Drs.
Alex Zijdenbos and Louis Collins for useful suggestions on the interfaces.

7



Fig. 4. Sample JIV application: evaluating the mis-registration of two (simulated)
MRI-s, after tissue classification. The colormap limits sliders (window/level) can be
used to restrict the visible tissue classes (top and bottom screenshots)

References

1. A. Ade, W. Meixner, and B. Athey. The visible human female world wide web
browser. In The Second Visible Human Project Conference Proceedings, Oct 1998.

2. C. Alberola, R. Cardenes, M. Martin, M. A. Martin, M. A. Rodriguez-Florido, and
J. Ruiz-Alzola. disnei: A collaborative environment for medical images analysis and
visualization. In Medical Image Computing and Computer-Assisted Intervention:
Third International Conference, Lecture Notes in Computer Science, pages 814–
823, 2000.

3. E. Bellon, J. Wauters, J. Fernandez-Bayo, M. Feron, K. Verstreken, J. Van Cley-
nenbreugel, V. den Bosch B, M. Desmaret, G. Marchal, and P. Suetens. Using
www and JAVA for image access and interactive viewing in an integrated PACS.
Medical Informatics, 22(4):291–300, Oct-Dec 1997.

4. Y.-J. Chang, P. Coddington, and K. Hutchens. Viewing the visible human using
Java and the web. In Y. Y. et al., editor, Asia Pacific Web (APWeb) Conference.
International Academic Publishers, Sep 1998.

5. C. A. Cocosco. MNI ICBMView. http://www.bic.mni.mcgill.ca/icbmview/.
6. C. A. Cocosco. MNI JIV. http://www.bic.mni.mcgill.ca/users/crisco/jiv/.
7. P. Coddington, Y.-J. Chang, and K. Hutchens. The NPAC/OLDA visible human

viewer. http://www.dhpc.adelaide.edu.au/projects/vishuman/.
8. A. P. Dagher, M. Fitzpatrick, A. E. Flanders, and J. Eng. Enhancing web appli-

cations in radiology with Java: estimating MR imaging relaxation times. Radio-
graphics, 18(5):1287–93, Sep-Oct 1998.

9. J. Fernandez-Bayo, O. Barbero, C. Rubies, M. Sentis, and L. Donoso. Distributing
medical images with internet technologies: a DICOM web server and a DICOM
Java viewer. Radiographics, 20(2):581–90, Mar-Apr 2000.

8



10. MIT: AnatomyBrowser. http://www.ai.mit.edu/projects/anatomy browser/.
11. P. Golland, R. Kikinis, M. Halle, C. Umans, W. E. Grimson, M. E. Shenton, and

J. A. Richolt. Anatomybrowser: A novel approach to visualization and integration
of medical information. Computer Aided Surgery, 4(3):129–43, 1999.

12. K. A. Johnson and J. A. Becker. Harvard university: The whole brain atlas navi-
gator. http://www.med.harvard.edu/AANLIB/cases/java/case.html.

13. J. Lancaster, J. Summerln, L. Rainey, C. Freitas, and P. Fox. The talairach daemon,
a database server for talairach atlas labels. In Neuroimage, volume 5(4), page S633,
1997.

14. J. L. Lancaster, P. T. Fox, S. Mikiten, and L. Rainey. Talairach daemon.
http://ric.uthscsa.edu/projects/talairachdaemon.html.

15. Internet image viewer (iiV). http://james.psych.umn.edu/CNUViewer.
16. J. T. Lee and J. V. Pardo. iiV: A Java-based internet image viewer. In NeuroImage,

volume 11(5), page S918, 2000.
17. D. MacDonald. MNI register+Display. ftp://ftp.bic.mni.mcgill.ca/pub/register+Display/.
18. P. Neelin. MNI MINC. ftp://ftp.bic.mni.mcgill.ca/pub/minc/.
19. P. Neelin, D. MacDonald, D. L. Collins, and A. C. Evans. The minc file format:

from bytes to brains. In Neuroimage, volume 7(4), page S786, 1998.
20. A. Oka, Y. Harima, Y. Nakano, Y. Tanaka, A. Watanabe, H. Kihara, and

S. Sawada. Interhospital network system using the worldwide web and the common
gateway interface. Journal of Digital Imaging, 12(2 Suppl 1):205–7, May 1999.

21. EPFL: Visible human slice and surface server. http://visiblehuman.epfl.ch/.
22. S. Vetsch, V. Messerli, O. Figueiredo, B. Gennart, R. D. Hersch, L. Bovisi, R. Welz,

and L. Bidaut. A parallel pc-based visible human slice web server. In The Second
Visible Human Project Conference Proceedings, Oct 1998.

9


