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Abstract. A comparative study of the performance of two different ap-
proaches to fully automatic (model-based) brain anatomical MRI tissue
classification is presented in this paper. Both simulated and real image
data, as well as various subject brain morphologies (young-healthy, el-
derly, and diseased individuals) were used. The recently proposed “MNI”
classification method was found to perform better, and to be more robust,
than some of the existing state of the art for this application. Moreover,
presented experimental results question the popular assumption that tis-
sue class multi-spectral aMRI intensities have a Normal (Gaussian) dis-
tribution.

1 Introduction

Many kinds of computerized analyses can be used to extract information from
three-dimensional (3D) MRI data of the human head. The application that con-
cerns this paper is the classification, or labeling, of individual voxels of a 3D
anatomical MR image (aMRI) as one of the main tissue classes in the brain:
cerebro-spinal fluid (CSF), grey matter, and white matter; a fourth class is de-
fined as “background”, denoting everything else: other tissues, as well as air.
An accurate and robust tissue classification is the basis for many applications
such as: quantitative measurements of tissue volume in normal and diseased
populations, morphological analysis (for example, of cortex folding patterns), or
visualization. Fully automatic, robust tissue classification is required for batch
processing the data from large-scale, multi-site clinical trials or research projects,
such as [1].

Classification methods operate in a multi-dimensional feature space. Each
feature consists of an image intensity at the spatial location (voxel) to be clas-
sified. All the features are derived from the same subject (for example, using
multi-spectral MRI). An aspect that is ignored by most brain MRI classifica-
tion schemes is how to fully automatically adapt to a new MRI brain dataset,
possibly originating from a new site and MR scanner1. Here we present a quanti-
tative comparative study of a method we recently developed [2] against another

1 The aMRI intensity scale has no absolute meaning; the image values and contrast
are dependent on many variable acquisition and post-processing parameters.
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method [3] representative for the existing state of the art in fully automatic brain
tissue classification.

2 Methods

Expectation-Maximization (EM) is a popular statistical classification scheme
for this application. Originally proposed in a brain MRI context by Wells [4],
and subsequently improved by others, these methods interleave intensity non-
uniformity (INU) field estimation and classification, in an iterative fashion. Re-
cent improvements [3, 5] fully automate this classification scheme by employing
a probabilistic brain tissue atlas (a “model”), defined in a “stereotaxic space”
(a standard, brain-based coordinate system).

In this comparative study we used the SPM’99 tissue classification (segmen-
tation) software [3]. It employs an EM-style scheme. This software is easily acces-
sible [6] (and at no-cost), easy to use, and popular in the neuroimaging research
community. In practice, two of the assumptions made by SPM are questionable:

1. The brain subjected to classification is morphologically similar to the prob-
abilistic model. The iterative approach can compensate for small deviations
from the model, which is used for automatic initialization. However, the prior
tissue probability at the current spatial location (given by the model) is con-
sidered in the classification decision. Consequently, anatomies significantly
different than the model can lead to errors.

2. Same as most classification methods proposed in the literature, SPM models
the tissue MR image intensity distributions as multi-variate Normal (Gaus-
sian) distributions in feature space.

The tissue classification method recently developed at the Montreal Neurological
Institute [2] (to be referred to as the “MNI method”) does not rely on the
above two assumptions. First, while the MNI method is also model-based, the
probabilistic model is only used for initialization, and the method is designed
to adapt to significant morphological deviations from the model. Second, this
method is non-parametric: it does not assume a particular shape of the tissue
class clusters in feature space.

Our study focused on multi-spectral MRI classification experiments. Using
more than one MRI contrast of the same subject is attractive because it improves
the cluster separation in feature space, especially in the presence of significant
imaging artifacts (the noise and the INU are un-correlated between acquisitions).

A comprehensive qualitative visual evaluation of the classification result by
a human observer is subjective and difficult, considering the morphological com-
plexity and variability of the human brain. Given a reference classification (a
“gold standard”), one can compute a quantitative measure of similarity between
the classification result and this standard. We used Kappa, which is a chance-
corrected similarity measure between two labelings [7]; its maximum value of 1
corresponds to a perfect agreement, and a value of 0 corresponds to agreement
due to chance alone. The Kappa was also used by others [1, 3] for this application.
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3 Atypical anatomies

Both SPM’99 and the MNI method use probabilistic brain tissue atlases (stereo-
taxic space tissue probability maps) that were constructed from a young normal
(healthy) population. To investigate the robustness against morphological de-
viations from the probabilistic model, we tested the classification methods on
elderly, and on diseased subjects — aging and pathology typically cause signifi-
cant deviations from a young-normal model.

3.1 Simulated Elderly Brain MRI

These data were produced using a MRI simulator [8] that produces realistic
synthetic MRI images based on an anatomical model (a “phantom”). This model
was used as the gold standard for computing the Kappa figure of merit. 10
different “phantoms” resembling elderly brains (Fig. 1) were created as follows:

1. 10 individual T1 scans were selected from a large database2. These individu-
als (5 males, 5 females) were 60-70 years old, and from the same population.

2. These individual scans were non-linearly spatially registered [9] to a previ-
ously available standard phantom [8].

3. The resulting deformation field was inverted and used for deforming the
standard phantom, such that it looks similar to the source individual brain.

Then, T1, T2, and PD MRI-s were simulated as 1mm isotropic voxel acquisi-
tions, with 3% noise and 20% INU (typical artifact amounts). The quantitative
classification results on these data are presented in Fig. 2. It should be noted that
SPM had an advantage in this experiment: the MNI method did not employ an
INU correction procedure; SPM did. In a practical image analysis system, such
a correction method (e.g. [10]) is typically employed, thus the INU level may
be less than 20%. Also, these simulations [8] model the tissue MR properties as
homogeneous throughout the brain. In practice, this is not the case.

3.2 Real Data: Alzheimer’s Disease Elderly Patients

Multi-spectral MRI scans (T1-T2-PD) were acquired for 11 elderly patients (aged
> 60) diagnosed with Alzheimer’s Disease (which causes cortical atrophy), as
part of a clinical study. The T1 was acquired at 1 mm

3 isotropic resolution.
The T2 and PD were acquired as 8 interleaved acquisitions, each with 8 mm
sagittal slices (1mm

2 in slice resolution); the 8 scans were then spatially co-
registered, then averaged together in order to obtain a single final 3D image
with improved resolution. All three modalities were registered (and re-sampled,
at 1 mm

3 resolution) to a stereotaxic space using 9-parameter linear registration
software. Also, INU correction was performed using N3 [10]. Unlike the MNI
method (TPM τ = 0.90), SPM gave poor results on some of the subjects (2 out
of 11): Fig. 3.

2 Data source: Dr. Ryuta Kawashima, Sendai, Japan.
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Fig. 1. (Left to Right) standard phantom (column 1), and three sample “elderly brain”
phantoms (columns 2-4). Each tissue is represented as a different gray shade. Compared
to the standard phantom (constructed from a young-normal scan), the “elderly” phan-
toms exhibit enlarged ventricles and overall brain atrophy (typical of aging brains).
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Fig. 2. Simulated (elderly brain) multi-spectral MRI: Kappa figure of merit for tissue
classification. 10 repetitions, each with a different “phantom” (anatomical model). Left:
MNI method (for different values of its parameter “TPM τ” [2]). Right: SPM. Note
that MNI performs better for all τ ≥ 0.3. A Wilcoxon signed rank test for equality of
medians (matched samples) between SPM and MNI (τ = 0.9) gives p = 0.002.
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Fig. 3. Two elderly Alzheimer’s Disease patients (top: #9, bottom: #11) poorly clas-
sified by SPM. (left to right:) T1, T2, PD MRI-s, MNI classification result, SPM clas-
sification result (in increasing grey brightness: background, CSF, grey-, white-matter).

(a) manual segm. (b) “gold std.” (c) MNI result (d) SPM result

Fig. 4. Elderly Alzheimer’s Disease patient #3: (a) manual segmentation, and (b) the
derived “gold standard” superimposed on the T1 MRI; (c,d) classified images.

For a quantitative classification evaluation, a trained neuroanatomist (A.D.)
manually segmented, using the T1 3D image, the volume of the following left
basal ganglia grey-matter structures: Putamen, Globus Pallidus, Caudate, and
Nucleus Accumbens [11]. Kappa was computed against the manual segmenta-
tion (considered the “gold standard”) on a region of interest (ROI) obtained
by a 3D “dilate” morphological operation of the manually segmented putamen
volume (Fig. 4). Since the putamen is surrounded by white-matter (with the
possible exception of “bridges” to the other three segmented basal ganglia grey
structures), this ROI allows for a local evaluation of the classification of the
grey-white boundary around the putamen (Fig. 5).
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Fig. 5. Multi-spectral MRI, elderly diseased patients: local Kappa figure of merit for
tissue classification around the left putamen (Fig. 4). Note the poor SPM results for
patients #9 and #11 (see also Fig. 3). MNI gives higher kappa on 9 out of 11 subjects.

4 Feature Space Data Distributions

If the features used by the classifier are MR signal intensities from various
MRI modalities (such as T1, T2, PD), then the multi-variate “Normal” (Gaus-
sian) distribution can be a poor model for the data distributions in the (multi-
dimensional) feature space. Besides biological causes such as the intrinsic het-
erogeneity within the tissue classes, the MRI acquisition artifacts also affect the
intensity distributions.

A real multi-spectral MRI dataset of a 36 year old normal man was used to
study the feature space distributions. The T1-weighted, 1 mm isotropic voxel,
3D scan was completely manually segmented by a human expert neuroanatomist
(N.K.). T2 and PD scans were also acquired in two interleaved acquisitions, as
2mm thick sagittal slices (1 mm

2 in plane); the two paired scans were spatially
co-registered and averaged together in order to improve the image resolution.
Then, all MR image data was pre-processed as previously described (section 3.2).

In order to experimentally study their effect on feature space distributions,
two MRI artifacts were artificially added to this MRI dataset (Fig. 6): an ad-
ditional multiplicative INU field (estimated from real MR data), and increased
partial volume effect corresponding to thicker acquisition slices (simulated by
blurring with a 1-dimensional box smoothing kernel).

Using the full-brain (except cerebellum) manual segmentation as “gold stan-
dard”, a comparative quantitative classification experiment was also performed
on this dataset (Fig. 7). It should be noted that, unlike in the other experi-
ments presented here, this subject is from the same population represented by
the probabilistic models (young normals). Hence, the better performance of the
MNI method over the SPM method is likely due to its non-parametric design.
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Fig. 6. Feature space probability densities for the three classes (left to right): CSF,
grey matter, white matter. Densities (represented as iso-contours at equally spaced
values between 0 and the cluster’s maximum) are estimated from real T1+PD MRI
using a full-brain manual segmentation. The INU and the thicker slices noticeably
make the clusters further deviate from the Normal shape. A Doornik-Hansen test for
multi-variate normality [12] on the grey matter cluster gives p ≈ 0.
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Fig. 7. Real young-normal multi-spectral MRI dataset: Kappa figure of merit for tissue
classification. Left: MNI method (for different parameters τ [2]), 10 repetitions for each
τ . Right: SPM. MNI gives a statistically significant improvement over SPM for τ ≥ 0.5.
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5 Conclusion

We presented a comparative study of a recently developed method for model-
based fully automatic brain MRI tissue classification (“MNI” [2]) against another
method (“SPM’99” [3]) representative for the existing state of the art. The study
was done on both real and simulated multi-spectral data.

The MNI method proved to be more robust against variations in the brain
morphology, and in the MRI data. Moreover, in all experiments the MNI method
gave a statistically significant improvement over the SPM method in a quanti-
tative figure of merit: a similarity measure computed against a reference clas-
sification. In addition, we presented results that question the assumption that
the tissue class aMRI intensities have a Normal (Gaussian) distribution. Even
if this assumption would be acceptable for some data, it is safer not to make
it if the automatic classification method aims to be robust against variability
in the imaging data quality. Robustness is especially important for large scale,
multi-site data collection research projects or clinical trials.

Acknowledgements: Adina Derrick, Jean-François Mangin, John Sled, Steve
Robbins, Peter Neelin, Louis Collins.
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