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Abstract

A fully automatic procedure for brain tissue classification from 3D magnetic reso-

nance head images (MRI) is described. The procedure uses feature space proximity

measures, and does not make any assumptions about the tissue intensity data distri-

butions. As opposed to existing methods for automatic tissue classification, which

are often sensitive to anatomical variability and pathology, the proposed procedure

is robust against morphological deviations from the model. A novel method for

automatic generation of classifier training samples, using a minimum spanning tree

graph-theoretic approach, is proposed in this thesis. Starting from a set of samples

generated from prior tissue probability maps (the “model”) in a standard, brain-

based coordinate system (“stereotaxic space”), the method reduces the fraction of

incorrectly labelled samples in this set from 25% down to 2%. The corrected set of

samples is then used by a supervised classifier for classifying the entire 3D image.

Validation experiments were performed on both real and simulated MRI data; the

kappa similarity measure increased from 0.90 to 0.95.
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Résumé

Une procédure entièrement automatisée pour la classification de tissus cérébraux à

partir d’images de résonance magnétique (IRM) 3D de la tête est décrite. Cette

procédure utilise des mesures de proximité spatiale d’élements et ne fait aucune

supposition sur les distributions des données d’intensité de tissus. Contrairement

aux méthodes de classification automatique de tissus existantes, qui sont souvent

sensibles aux variations anatomiques et aux pathologies, la procédure proposée

est robuste relativement aux déviations morphologiques du modèle. Une nouvelle

méthode pour la génération automatique d’échantillons d’entrainement de classifi-

cateur utilisant une approche théorique par arbre à étendue minimum est proposée

dans ce mémoire. En se basant sur un ensemble d’échantillons générés à partir

de cartes de probabilité de tissus (le “modèle”) préalablement connues et exprimés

dans un système de coordonnées standard lié au cerveau (“espace stéréotaxique”),

la méthode réduit la fraction d’échantillons identifiés incorrectement de 25% à 2%.

Cet ensemble d’échantillons corrigé est ensuite utilisé par un classificateur supervisé

pour classifier toute l’image 3D. Des expériences de validation ont été effectuées au-

tant sur des données IRM réelles que simulées; le coefficient de similarité Kappa a

augmenté de 0.9 à 0.95.
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Chapter 1

Introduction

Fully automatic brain tissue classification from magnetic resonance images (MRI) is

of great importance for research and clinical studies of the normal and diseased hu-

man brain. Operator-assisted segmentation (classification) methods are impractical

for large amounts of data, and also are non-reproducible. Existing methods for fully

automatic brain tissue classification typically rely on an existing anatomical model.

This makes them sensitive to any deviations from the model due to pathology, or

simply due to normal anatomical variability between individuals. Also, there may

be situations when the only model available was constructed from a completely

different human population than the image to be classified.

This thesis presents a novel, fully automatic classification procedure that is

robust against morphological deviations from the model. Moreover, the procedure

does not make any assumptions about the MRI tissue intensity distributions.
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Chapter 2

Brain Tissue Classification from

MRI

Magnetic resonance imaging (MRI), also referred to as nuclear magnetic resonance

(NMR), is a powerful and flexible medical imaging modality. Among many other

capabilities, it can produce high-resolution images with good contrast of the different

biological soft tissue types [32]. As a non-invasive technique, it is widely used in

the clinical and research environments for imaging both anatomy and function.

Many kinds of computerized analyses can be used to extract information from

three-dimensional (3D) MRI data of the human head. The application that concerns

this thesis is the classification, or labeling, of individual voxels of a 3D anatomical

MR image (aMRI) as one of the main tissue classes in the brain: cerebro-spinal fluid

(CSF), grey matter, and white matter; a fourth class is defined as “background”,

denoting everything else (skull, skin, fat, air surrounding the subject’s head, and so

on). A feature of MRI is that, by using different pulse sequences, different contrasts

between tissue types (multi-spectral image data of the same subject) can be easily

obtained.

An accurate and robust tissue classification is the basis for many applications

such as: quantitative measurements of tissue volume in normal and diseased popu-
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lations [19], morphological analysis (for example, of cortex folding patterns), or vi-

sualization. Manual, or even semi-automatic, classification performed by a trained

expert is labor-intensive (hence impractical for processing large amounts of data),

highly subjective, and non-reproducible [77]. Fully automatic, robust tissue classi-

fication is required for batch processing the data from large-scale, multi-site clinical

trials or research projects (such as [77]).

2.1 AMRI artifacts

Acquisition artifacts in the MR images can be a significant challenge for automated

tissue classification. The main artifacts affecting brain anatomical MRI (aMRI)

scans are:

Intensity non-uniformity (INU) Also known as shading artifact or bias field, it

is inherent to MRI. It was recently shown [60, 61] that the largest contributor

to INU is the electromagnetic field inhomogeneity which is dependent on the

particular shape of the subject being scanned. An extensive review of INU

correction methods is given in [59, 63]; the correction (using post-acquisition

image processing techniques) can be done separately [63], or in conjunction

with image segmentation [5, 6, 31, 35, 54, 70, 75, 76].

Noise: The MRI noise is Rician distributed, and uncorrelated between voxels. The

image acquisition exhibits a tradeoff between signal-to-noise ratio (SNR) on

one side, and spatial image resolution and scan time on the other side – a

higher SNR can be obtained by lowering the resolution, or by increasing the

scan time. Noise tends to be 2-5% of the maximum signal intensity when

using a modern MR scanner for a standard (in-vivo) human brain anatomical

scan. MRI noise can be reduced by post-acquisition image processing tech-

niques such as anisotropic filtering [30], which is an edge preserving smoothing

3



operation.

Partial volume: Technically it is not an “artifact” but merely a consequence of

the finite resolution of the imaging process – the image voxels (typically about

1 mm3 or larger) may contain a mixture of more than one tissue type, which

all contribute to the measured signal. Since increasing the resolution is not

always practical (longer scan time, increased noise), an alternate solution is

to attempt to recover the mixing fractions in the image segmentation (classi-

fication) method [11, 47, 54, 72].

More information about MRI and its artifacts can be found in reference texts, such

as [32].

2.2 Validation methods

Brain tissue classification (or segmentation) methods can be tested and evaluated

on real MRI data, or on realistic simulations of MRI acquisitions. The evaluation

can be:

qualitative: results are manually inspected and compared with knowledge of brain

typical anatomy.

quantitative: some similarity measure is (automatically) computed between the

classification result and a reference “gold standard” classification.

The MR image data used in this work for quantitative measurements is described

below.

2.2.1 Simulations

These data were produced using a sophisticated MRI simulator [44, 45], using as

input a realistic anatomical model (“phantom”) [21]. The standard phantom is

4



based on a real scan of a young (30 year old) normal male. This simulated data is

identical to what is publicly available through the BrainWeb Internet interface [1,

14].

It should be mentioned that these (BrainWeb) simulations assume homogeneous

tissue MR properties throughout the brain. In practice, this is not the case [10, 41,

50]. However, these simulations provide a realistic approximation for testing MRI

classification methods.

Moreover, partial volume (which reduces the cluster separation in feature space)

is a challenge for any classification method. A simple classifier was used for estimat-

ing the tissue fractions in each voxel (partial volume) when creating the anatomical

model used here [21]; a more sophisticated continuous classifier (section 2.3) may

provide a better estimate.

One advantage of using simulated data is that the “answer” (the “gold stan-

dard”) for the tissue classification procedure is known – it is the anatomical model

(“phantom”) that was used to produce the simulations. This allows the computation

of accurate quantitative measures of performance. Other advantages of simulations

are convenience, flexibility, and low cost.

Another advantage is in the case of multi-spectral MR data. With a real scanner,

different MRI contrasts (such as T1- and T2-weighted scans) are acquired separately.

The scans subsequently need to be spatially registered (aligned) to each other before

the automatic classification, and the registration procedure can introduce alignment

errors. Comparatively, simulated multi-modality image data is perfectly registered

(as long as the same phantom is used for all modalities).

2.2.2 Real data, young individual

A real multi-spectral MRI scan of a 36 year old normal male was the basis of many

of the measurements and experiments presented in this thesis. The T1-weighted,

1mm isotropic voxel, scan was completely manually segmented [37–39] by a human
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expert – a trained neuroanatomist. T2 and PD scans were also acquired as 2mm

thick sagittal slices; both acquisitions were repeated a second time, with a 1mm

offset; the two paired scans were co-registered and averaged together in order to

improve the image resolution.

All three modalities (shown in Figure 2.1) were registered (and re-sampled) to a

stereotaxic space [20, 67] using linear registration software [20]; also, INU correction

was performed using N3 [63].

For this dataset, the “gold standard” was the manual classification; this has

several limitations. First, the human expert had the advantage of also having

previous anatomical knowledge in addition to just the MR signal intensities. Second,

the expert only performed the classification on the T1 data (some tissues, or CSF

and air spaces, are difficult to distinguish on a T1). Lastly, this classification is

discrete, not continuous (without any partial volume). Moreover, it is generally

recognized that automatic classifications yield more consistent and reproducible

region boundaries than manual classifications do.

This dataset presents additional challenges for automatic classification when all

modalities are used together: the T2 and PD data are of a lower true resolution

(1x1x2mm, while the simulations were done at 1x1x1mm), and there is a possibility

of registration imperfections between the 3 scans.

2.2.3 Quantitative similarity measure

The terminology associated with a generic classification result is given in Table 2.1.

This thesis uses the Kappa measure, which is a chance-corrected similarity measure

between two labelings, originally proposed by Cohen [15]. This measure was also

used by other researchers [5, 6, 42, 77] for quantitative measurements of brain MRI

classification performance.

For a C-class classification problem, if (∀ class i) we denote by ai the number of

true positives, by ci the number of samples classified as i, and by ti the true number

6



Figure 2.1: The “young normal” real multi-spectral MRI dataset (section 2.2.2).

Left to right: T1, T2, PD. Top to bottom: transverse, sagittal, coronal 2D slices

through the image volumes.
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of samples in class i, and by N the total number of samples (in all classes), then

kappa is defined as:

Kappa =
Po − Pe

1− Pe

where Po is the observed proportion of agreement (also known as “accuracy”):

Po =
1

N

C
∑

i=1

ai

and Pe is the expected (due to chance) proportion of agreement:

Pe =
1

N2

C
∑

i=1

citi

The following should be pointed out regarding kappa:

• it treats all voxel labeling differences (and similarities) the same, regardless of

where in the image the voxel is.

• its value is a relative and not an absolute one; that is, it is only meaningful in

a comparison setting.

2.3 Review of the state of the art

An overview of medical imaging low-level segmentation methods is given in [23],

and reviews of MRI segmentation are given in [8, 12, 78]. Segmentation methods

can be image intensity-based (classification, region-based methods), or edge-based

methods. Both have their limitations: the former are affected by any overlaps

(between tissue types) in the tissue intensity distributions; for the latter, highly

curved interfaces between tissues (such as the gray-white matter interface in the

brain) can be challenging to recover from finite resolution images.

Classification methods operate in a multi-dimensional feature space. Each fea-

ture consists of an image intensity at the spatial location (voxel) to be classified;

all the features are derived from the same subject. Such classification techniques

8



are, in fact, not medical imaging specific – an extensive coverage of classifiers is

given in [28], and some selected topics are also given in [26, 27]. Many researchers

have applied to brain MRI classic methods such as the Bayes (maximum likelihood)

classifier [19, 40], or non-parametric classifiers like kNN (k nearest neighbors) [74]

and ANN (artificial neural network) [77].

Expectation-Maximization (EM) is a popular statistical classification scheme

for this segmentation application; originally proposed (in a brain MRI context) by

Wells [75], and further improved by others [5, 6, 31, 35, 58, 70, 71], these methods in-

terleave INU field estimation (correction) and classification, in an iterative fashion.

Some authors [31, 62] have suggested that Wells’ original method [75] is very sensi-

tive to the training samples, and also that high partial volume regions and outliers

can confuse the bias field estimation. Moreover, the early methods [31, 35, 58, 75]

need to be supplied with the class intensity distribution parameters (which are usu-

ally generated by manually selecting representative voxels), and these parameters

are kept fixed during the operation. In order to address this issue, Van Leem-

put [70, 71] and Ashburner [5, 6] re-estimate the distribution parameters at each

iterative step; also, both methods use a probabilistic brain atlas to provide the

initial values of these parameters.

Any overlaps in the class feature space (intensity) distributions will lead to a cer-

tain amount of misclassifications, generally at the interface between tissues (where

partial volume is also present). Solutions that attempt to reduce this problem

are post-classification morphological operations, and contextual classifiers – such

as “relaxation” optimization procedures using Markov random field (MRF) mod-

els [11, 35, 55, 76]. Udupa proposed a “fuzzy connectedness” method [69] which

measures the strength of connectness between two voxels as a function of both their

relative spatial location and the intensity similarity between them.

A method that combines the strengths of intensity (within region) informa-

tion and edge information, in a multi-scale approach, was recently proposed by

9



Niessen [52]; however, the method requires some user assistance, hence is not fully

automatic.

Besides the traditional discrete classifiers (that output a discrete class label for

each voxel), there are also classifiers that output a fuzzy (continuous) class mem-

bership value. This can be considered as an estimate of the mixing proportions of

several tissues in a voxel (the effect of partial volume). A number of researchers

have proposed continuous classifiers (all modeling a mixture of multi-variate Normal

intensity distributions): Choi [11] (the so called “mixel” model), Laidlaw [46–48]

(using a Bayes classifier), Schroeter [58] (an improved EM algorithm, and also a

genetic algorithm), and Pham [54] (an adaptive fuzzy c-means method that also

estimates the INU field). An improvement was recently proposed by Van Leem-

put [72], who also suggested that previous methods may perform poorly in practical

situations.

Another approach, typically used for segmenting specific anatomical structures,

is to use higher-level information such as deformable models or atlases, or prior

shape knowledge [64]. However, such methods can have difficulty with abnormal

anatomies (or highly variable ones, like the human cortex).

An interesting method that combines classification and deformable models was

proposed by Warfield [73, 74]. This method iteratively interleaves classification and

non-linear registration; the typical limitations of classification are addressed by

constraining it with the (deformed) anatomical template.

An aspect that is ignored by most brain MRI classification schemes is how to

fully automatically produce a correct set of training samples for the classifier, when

given a never-seen-before MRI brain dataset, possibly originating from a new site

and MR scanner. Nevertheless, some researchers have attempted this:

• Harris [34] extracts samples from small brain areas with low intensity variance,

then clusters them in feature space and rejects outliers using various heuristics.

The method requires “typical” cluster mean and variance values; however,

10



these values are scanner, site, and even pulse sequence, specific.

• The use of stereotaxic space tissue probability maps (TPM-s) for automating

supervised classification algorithms was originally proposed by Kamber [40],

and subsequently used by other researchers [42, 77]. The TPM is used to select

training samples from spatial locations that are very likely to contain a given

tissue type. However, this approach is very sensitive to any deviations of the

subject’s anatomy from the statistical model represented by the TPM (more

details about this approach will be given in section 3.1).

• Van Leemput [70, 71] uses a probabilistic brain atlas (a TPM) to initialize,

and also constrain, their EM-style scheme. However, the author reports that

the method fails on atypical (significantly different than the atlas) brain scans,

such as child brains, or brains with large pathological abnormalities.

• A scheme very similar to the latter is used by Ashburner [5, 6]. Although a

blurring of the prior probability map (with a 8mm FWHM Gaussian kernel)

is performed in order to increase robustness, similar limitations are reported

for pathological brains.

Moreover, most of the feature-space classification methods mentioned in this

section (exceptions are [69, 74, 77]) assume multi-variate Normal (Gaussian) class

intensity distributions – and, as will be argued in section 3.2, this is a questionable

assumption.

11



Table 2.1: Agreement between a classification and truth (“gold standard”), for a

generic two-class (binary) problem. For example, if a classification labels a sample

as belonging to a certain class, then this answer is a “true positive” if it is correct,

and a “false positive” if it is not. A C-class problem (C > 2) can be seen as a

binary problem for each class i (“yes” corresponds to class i, “no” corresponds to

the union of the other C − 1 classes); in other words, correctly labeled samples are

“true positives”, and incorrectly labeled samples are “false positives”.

Truth

Yes No

Classification Yes true positive (TP) false positive (FP)

No false negative (FN) true negative (TN)

12



Chapter 3

Problem Statement

The contribution of this thesis is a novel method for fully automatic generation

of correct training samples for tissue classification. The method is non-parametric

(hence, does not make any assumptions about the feature space distributions). It

is based on a prior tissue probability map in stereotaxic space (the “model”), and

is designed to accommodate subject anatomies that are significantly different than

the model (the difference can be due to aging, due to pathology, or even due to

anatomical variability between normal individuals of similar age).

The end of the previous Chapter reviewed existing methods for fully automatic

brain tissue classification. Their limitations, as well as how these limitations are

addressed by this thesis, are discussed in more detail below.

3.1 Model-based training set selection

The MRI intensity scale has no absolute meaning, and is dependent on the pulse

sequence, and other variable scanner parameters. Thus, the ability of a tissue

classification method to automatically adapt to a new MRI dataset is especially

important for data collected from multiple sites. Most of the previously published

classification methods (section 2.3) do not address this issue.

13



A stereotaxic space tissue probability map (TPM) of a given tissue is a spatial

probability distribution representing a certain subject population. For each spa-

tial location (voxel) in stereotaxic space, the TPM value at that location is the

probability of the given tissue being observed there, for that particular population.

Once imaging data is spatially registered to a stereotaxic space, TPM-s pro-

vide an a-priori spatial probability distribution for each tissue (Figure 3.1). This

distribution can be used to automatically produce a training set for the super-

vised classifier [40]: for example, choose spatial locations that have a TPM value

≥ τ = 0.99 (99%). The lower the τ , the more qualifying spatial locations there will

be, as shown in Figure 3.2. However, this simplistic approach has limitations:

False positives: Since the morphology of the human brain is so complex and

individual-specific, even among the locations with very high a-priori prob-

ability of being a given tissue, some of them will be “false positives” (that is,

wrongly labeled as one tissue class, when in fact they are from another class).

It was determined experimentally (details forthcoming in section 5.2) that for

a subject drawn from the same population used to create the TPM-s, and for

τ = 0.99, the false positives amount to about 3% of all selected locations.

However, this fraction will be larger when the subject is from a different pop-

ulation (in a statistical sense) than the population represented by the TPM.

This is illustrated by Figure 3.3: there is a visible morphological difference

between the young and elderly groups of subjects1. For example, the enlarged

ventricles (filled with CSF) will cause some spatial locations with high a-priori

probability of being grey- or white-matter (according to the young-population

TPM) to actually correspond to CSF in the elderly subject’s brain.

Intensity distribution estimation: As seen in Figure 3.2, at τ = 0.99 (where the

false positive rate is lowest) the qualifying sample points give a very limited

1MRI data source: Dr. Ryuta Kawashima, Sendai, Japan.
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coverage of the brain area (especially for CSF). Intuitively, this will not give

a good estimate of the true tissue intensity distributions desired for the final

supervised classification stage, for two reasons:

• Brain tissue is not homogeneous throughout the brain [10, 41, 50].

• MRI artifacts, such as INU, introduce additional spatial variations in the

measured tissue signal.

Thus, sampling at a lower τ would be beneficial for the intensity distribution

estimation; however, a lower τ also means more false positives.

The contribution of this thesis is a way to address these two limitations (of the

simple TPM thresholding approach). Specifically, a “pruning” of the raw set of

points obtained from the TPM is performed, with the goals of eliminating the false

positives caused by anatomical difference, and of allowing for a lower TPM τ . Intu-

itively, the pruning should improve the tissue classification for subject morphologies

which are “different” than the ones used to produce the TPM. Also it should give a

better estimate of the tissue intensity distributions by allowing sampling at a lower

TPM τ ; the better estimate should ultimately help the final supervised classifier

determine better decision boundaries.

From Figures 3.4 and 3.5, it can be observed that: 1. the densities estimated

using τ = 0.51+ pruning resemble the “truth” (manual segmentation) better than

the ones estimated without pruning, and 2. the pruning is more important at τ =

0.51 (the no-pruning distributions have severe overlap, due to the higher rate of false

positives). The unusual shape of the left-most distribution (CSF) is likely because

of the limitations of the manual segmentation procedure (see page 6).

The TPM-s used in this work (shown in Figure 3.1) were already available at

the Montreal Neurological Institute (MNI) [40, 42]. They were produced as follows:

1. A set of 12 individual scans were registered to the Talairach stereotaxic space [20,

67], and then classified using a manually trained supervised classifier [40].
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Then, for each of the three main tissue classes, the TPM value at each voxel

(spatial location) was computed as the fraction of the 12 scans that had that

voxel classified as that tissue. This was the first generation TPM.

2. A set of T1/T2/PD MRI scans of 53 young individuals (aged 18 to 35) were

used to produce the second generation TPM-s. The supervised classifier was

trained using the first generation TPM-s together with some manual assis-

tance [42]. The resulting (second generation) TPM-s were the ones used in

this thesis.

The final result of such a process is influenced by how the registration is done,

and by the particular tissue classification method. In the above, the registration

used a linear (rigid) transformation with 9 degrees of freedom, and the classification

employed an artificial neural network (ANN) classifier.

Nevertheless, the particular TPM used is not a critical factor. The TPM is just

an initial guess for the pruning algorithm; the only requirement is that the majority

of training points it provides, for a given τ , are correctly classified (“true positives”).

However, the more similar the morphology of the subject is to the average of the

population represented by the TPM, the better the entire classification procedure

should work.

3.2 Feature space data distributions

Non-parametric classifiers (supervised or not) are attractive because they don’t

make any assumptions about the underlying (feature space) data density functions.

Several popular classifiers, such as the Bayes (maximum likelihood) statistical clas-

sifier, the k-means (c-means) classifier, and the minimum-distance classifier, are

parametric classifiers – they assume the data distributions in feature space follow a

certain model. Typically, the multi-variate Gaussian model (“Normal” distribution)
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Figure 3.1: [left to right] A T1 MRI scan, and prior tissue probability maps (TPM-s)

for CSF, grey matter, and white matter. All 3D images are registered to the same

stereotaxic space.

Figure 3.2: Spatial locations with prior tissue probability (TPM value) ≥ τ , where

τ is (left to right): 0.50, 0.70, 0.90, 0.99. The three classes (CSF, grey matter, white

matter) are represented as different gray shades (CSF is darkest, white matter is

brightest).
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Figure 3.3: Average tissue classification results: the images show the spatial loca-

tions that were classified as a particular tissue in more than half of the scans in the

given group. Left: group of young healthy subjects (18-35 years old). Right: group

of elderly healthy subjects (60-80 years old), from the same population as the young

ones. Note the enlarged ventricles, and the general increased atrophy of the brain,

caused by natural aging. (CSF, grey matter, and white matter are shown as shades

of grey of increasing brightness.)
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Figure 3.4: Single-dimensional feature space (T1 MRI intensity) probability den-

sities for the three tissue classes (left to right : CSF, grey matter, white matter),

estimated from the real dataset (section 2.2.2) using (top to bottom): the manual

segmentation, the TPM thresholded at τ = 0.99, the TPM at τ = 0.51, and the lat-

ter followed by a “(perfect) pruning”. The pruning removed the false positive data

points, as indicated by the manual segmentation (considered “truth”). Note that

the densities obtained with τ = 0.51+ pruning resemble the manual segmentation

significantly better than the ones for no-pruning.
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Figure 3.5: Two-dimensional feature space (T1 and PD MRI intensities) probability

densities for the three tissue classes (left to right : CSF, grey matter, white matter),

represented as iso-contours (contours correspond to equally spaced values between

0 and each cluster’s maximum). The densities were estimated from the real dataset

(section 2.2.2) using: the manual segmentation, the TPM thresholded at τ = 0.99,

the TPM at τ = 0.51, and the latter followed by a “(perfect) pruning” (the pruning

removed the false positive data points, as indicated by the manual segmentation,

considered “truth”). Note that the densities obtained with τ = 0.51+ pruning re-

semble the manual segmentation significantly better than the ones for no-pruning.

20



is used (see section 2.3).

If the features are MR signal intensities from various MRI modalities (such as

T1, T2, PD), then the Gaussian model assumption can be poor. Other researchers

have also suggested that MRI tissue intensity distributions are not Normal [13,

24, 57]. Besides biological causes such as the intrinsic heterogeneity within the

tissue classes that concern this work (CSF, grey matter, white matter), the MRI

acquisition artifacts also affect the intensity distributions [5, 42, 57]. In order to

experimentally study their effect on feature space distributions, several artifacts (see

section 2.1) were artificially added to a real MRI multi-spectral dataset: additional

Rician distributed noise, additional multiplicative INU field (estimated from real

MR data), and increased partial volume effect corresponding to thicker acquisition

slices (simulated by blurring with a 1-dimensional box smoothing kernel). The

results are presented in Figure 3.6. The INU artifact, and the partial volume effect

(due to low spatial resolution) noticeably make the clusters deviate from the Normal

shape.

A disadvantage of non-parametric classifiers is that they tend to require a larger

training set for obtaining good performance; also, in general these classifiers are

more computationally expensive. While this was likely the reason why they were

not used more widely in the past, the computational demands are becoming less of

an issue as computing power steadily increases.
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Figure 3.6: Effect of acquisition artifacts on the tissue probability densities in feature

space (section 3.2). Densities (represented as iso-contours at equally spaced values

between 0 and the cluster’s maximum) were estimated from real T1+PD MRI data

using a full-brain manual classification (see page 5), eroded once to reduce the initial

partial volume. The INU and the partial volume (thick slices) noticeably make the

clusters further deviate from the Normal shape.
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Chapter 4

Method

The following presents a fully automatic, non-parametric, brain tissue classification

procedure based on feature space proximity measures. It consists of two stages:

1. A semi-supervised classifier, using a minimum spanning tree graph-theoretic

method, and stereotaxic space prior information. It produces a set of train-

ing samples customized for the particular individual anatomy subjected to

classification.

2. A supervised classifier, using the k nearest neighbor (kNN) algorithm. It is

trained on the set of samples produced by the first stage.

The main contribution of this thesis is stage 1, which will be referred to as the

“pruning” stage.

The pruning works on a set of input sample points that are selected (through

random sampling) from the qualifying locations in the respective tissue probability

map (TPM); an equal number of samples is selected for each tissue class (back-

ground, CSF, grey matter, white matter). The qualifying locations are locations

where the TPM value (i.e. the prior probability) is ≥ τ , where τ is the threshold

parameter.
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Both the pruning and the final classification are done in feature space. The

features used in this work are only MRI signal intensities (image gray levels), but

in general other features can be added – such as local gradient measures, spatial

location information, various moments computed on a neighborhood centered at

the voxel, and so on. The use of the TPM-s is a way of including prior anatomical

knowledge in the intensity-based classification.

The feature space proximity measure used in this work is a distance metric –

the common Euclidean distance (in d-dimensional space):

D(a, b) =

√

√

√

√

d
∑

i=1

(ai − bi)2

However, any other distance metric can be used1. A metric distance measure must

satisfy all of the following four conditions [28], ∀a, b, c points in feature space:

1. non-negativity: D(a, b) ≥ 0

2. reflexivity: D(a, b) = 0 if and only if a = b

3. symmetry: D(a, b) = D(b, a)

4. triangle inequality: D(a, b) + D(b, c) ≥ D(a, c)

4.1 Pruning implementation

The pruning technique makes use of a minimum spanning tree (MST) in feature

space. A MST of a set of points (in d-dimensional space) is defined as a tree that

connects all the points, and whose sum of all edge lengths (or, more generally, edge

“weights”) is as small as possible.

1In fact, the minimum spanning tree can be constructed even for a feature space distance

measure that is not a metric.
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This method is referred to as “semi-supervised” because, unlike in traditional

unsupervised classification (also known as clustering techniques), some prior infor-

mation exists in this application: the number of main clusters, and their relative

position in feature space is known (there could be other, smaller, clusters produced

by acquisition artifacts, or by other brain tissue classes than the main three2 such as

fat, skull, or brain lesions). Furthermore, each sample point has an initial labeling

suggested by the TPM-based point selection process (section 3.1); the assumption is

that the majority of these initial labelings are correct. The purpose of the pruning

is to reject the points with incorrect labeling.

Here are the three main steps of the pruning method, followed by a more detailed

description of the important parts:

1. The minimum spanning tree (MST) of the input set of points is constructed,

in feature space (see Figure 4.1).

2. Iteratively, the graph is broken into smaller trees (connected components, or

clusters) by removing “long” edges from the initial MST. At each step, the

main clusters are identified (and labeled) by using prior knowledge, and a stop

condition is tested on them; if not satisfied, the graph breaking is continued.

3. At the end, the main cluster points that are in the right cluster (have the

same initial labeling as their cluster) are deemed to be true positives and

kept; all the other points are deemed to be incorrectly labeled (false positives)

and discarded. Note that there may be more clusters than the main four

(corresponding to the four classes sought for) – the minor, smaller clusters are

considered to be false positives entirely.

MST computation: This work uses an implementation of Kruskal’s algorithm [2,

43]. The computation time for the prototype implementation used here is O(n3)

2CSF, grey matter, white matter.
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for large n, where n is the number of points. However, by using union-by-rank

and path-compression methods for an efficient connected components implementa-

tion, the time complexity can be reduced to O(n2 log n) [22]. Furthermore, using

the property that the (Euclidean distance) minimum spanning tree is a subset of

the Delaunay triangulation, the computation can be reduced to O(n logn) in 2-

dimensional space [53]. In 1-dimensional space, computing the (Euclidean distance)

MST is equivalent to sorting, which is O(n log n).

MST breaking: The goal of MST breaking is to remove the “long”, or “inconsis-

tent”, edges in order to separate the feature space clusters. Two heuristic methods

(inspired by [28]) were implemented and experimentally evaluated (Chapter 5).

Both use a threshold value T , which is decreased at each iteration of the algorithm

and tested on all edges of the graph in parallel.

• method A: an edge (i, j) is removed if length(i, j) > T×A(i) or if length(i, j) >

T × A(j), where A(i) is the average length of all the other edges incident on

node i (see Figure 4.1).

• method B: an edge (i, j) is removed if length(i, j) > T .

If the decreasing T reaches 1.0 for method A, or 0.0 for method B, and the stop

condition is still not satisfied, then the pruning method signals “failure” and discards

all the input points.

Main clusters identification: The main clusters are the best guesses for the

true background, CSF, grey matter, and white matter clusters in feature space.

Making the assumption that the majority of points have correct initial labels, the

best guess for each class is the cluster which contains the largest number of points

labeled as that class. If this assumption is not valid (because the TPM point

extraction threshold τ is too low), then the pruning result will be incorrect; various
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τ values are experimentally explored in Chapter 5. Note that early in the iterative

process some of these main clusters will not be distinct (because, for example, the

gray and white clusters were not yet separated).

Stop condition: If the above determined main clusters are found to be four dis-

tinct clusters, and the relative cluster locations in feature space correspond to prior

knowledge, the iterative graph breaking stops. The prior knowledge used in this

work was the relative ordering of the tissue intensities on a T1 image (in increasing

order: background, CSF, grey matter, white matter). The cluster locations are esti-

mated as the cluster median, along the T1 feature axis (even for multi-dimensional

feature spaces). The assumption here is that, even if the clusters overlap somewhat

in feature space, their medians along the T1 axis are still in the correct relative

order – this is a reasonable assumption to make (for adult human brains), even in

the presence of strong artifacts, as shown in Figure 3.6. Other MRI contrast (such

as T2) could be used for this purpose, as long as a similar ordering assumption is

valid.

4.2 Practical problems

4.2.1 Data precision

In practice, the signal intensity data produced by the MRI scanner has a limited nu-

merical precision – typically 12-bit, corresponding to at most 4096 distinct intensity

levels. The various pre-processing operations (which traditionally use a fixed point

12-bit data representation for the intermediate files) may further reduce the data

precision. The result is that when a large number of points are selected based on

the TPM not all of them will have distinct intensity values – in other words, some

points will be coincident in feature space. The problem is most severe when only

one feature (MRI) is used: for example, on a typical T1 dataset, 400 TPM-selected
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points was found to give only 200 distinct intensity values. When more features

(multi-spectral MRI) are used the problem is reduced: each additional feature ef-

fectively increases the precision of the fixed-point intensity data representation (e.g.

for two different MRI contrasts, each point will be represented by 2× 12 = 24 bits

in feature space).

Zero-length edges in the MST can confuse the edge-breaking method A, so the

graph data structure was adapted to handle two kinds of relationships (edges) be-

tween the nodes: “neighbors” (normal edges), and “roommates” (degenerate zero-

length edges) – see Figure 4.2. The MST operations (construction, breaking) ignore

the “roommate” edges; however, these edges are considered by the rest of the prun-

ing method (for example, when traversing all the points in a cluster).

Even if the “roommate” edges are ignored, due to the lack of resolution in fea-

ture space, the pruning does not work well on a large number of input points n; for

example, in the single-feature case, for n → ∞, any non-zero graph edge will have

only one possible length: the intensity quantization step. It was observed experi-

mentally that too many input points force the iterative pruning method (page 26)

to advance to lower values of the threshold T , resulting in excessive fragmentation

of the feature space clusters, and even failure of the pruning (due to the inability

to separate and identify suitable main clusters). Consequently, the number of true

positives (correctly labeled points) left after the pruning is reduced.

On the other hand, if the input set size n is too small the feature space data

densities will not be adequately sampled. The practical upper bound on n for single-

feature (T1) pruning was experimentally explored. The figure of merit chosen for

this experiment was the percent of original true positives preserved. The results for

simulated data (described in section 2.2.1) and for the real young-normal dataset

(described in section 2.2.2) are presented in Table 4.1. Based on these data, 150

points per class were chosen for the pruning validation experiments on T1 simu-

lated data, and 60 points per class for the T1-only real dataset (these validation
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experiments are presented in Chapter 5).

4.2.2 Multi-dimensional feature space

If only one MRI image is to be used, then a T1-weighted scan is preferred, since

it provides the best contrast between the main three brain tissue types. But using

multi-spectral MRI data (that is, MRI data of different modalities, typically T1-,

T2-, and PD-weighted) has advantages:

• it improves the cluster separation in feature space, especially in the presence

of significant imaging artifacts – the noise and the INU are not correlated

between T1 and T2 acquisitions, for example.

• it reduces the limited numerical precision problem (section 4.2.1).

Nevertheless, there are drawbacks too:

1. the possibility of registration errors: T2 and PD data are acquired separately

and need to be registered to the T1 data.

2. T2 and PD data are typically lower resolution (2-3 mm thick slices instead of

the 1 mm typical for the T1)3, hence exhibit more partial volume effect.

3. the Euclidean distance in d-dimensions (d > 1) is not invariant to independent

scaling of the different axes, and the MRI scanner raw output has no absolute

nor guaranteed scale; if one of the MRI images has a range much smaller

than the others, then it will not contribute much to the feature space distance

metric 4.

3Commonly used T2- and PD-weighted MRI acquisition sessions are much longer than T1-

weighted ones (for the same spatial resolution). Longer acquisition means more discomfort for the

human subject, and also increased scanning costs.
4This could also be exploited: a certain feature’s values can be artificially scaled down in order

to reduce that feature’s influence to the classification decisions.
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Table 4.1: Single-feature (T1 MRI) pruning: influence of the input set size on the

fraction of the original true positives that are preserved in the output. The observed

decrease of this fraction is due to the limited numerical precision problem, which

becomes more severe for larger input sets (see section 4.2.1 for details).

Simulated data

input points (per class) true positives preserved (%)

method A method B

40 84 89

75 87 88

150 83 83

300 68 54

600 30 0

Real young-normal dataset

input points (per class) true positives preserved (%)

method A method B

40 54 54

75 38 40

150 7 7
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However, the latter problem can be addressed by a pre-processing step that adjusts

(“normalizes”) the ranges of the input MRI-s. The pre-processing used in this work

was a simple range-matching procedure: the end-points of the intensity histograms

were matched together between image modalities (specifically, the image intensities

of the T2 and the PD were scaled to match the T1).

The end-points were not the absolute minimum and maximum values in the 3D

images, but a certain small percentile away from the extrema of the intensity his-

tograms. The rationale for this is the following: the MRI image can contain regions

(caused by imaging artifacts, for example) which are much brighter or much darker

than the intensities of the main tissue classes (CSF, grey matter, white matter);

however, such regions amount to a small number of voxels compared to the main tis-

sues, thus the above mentioned end-points are reliable estimators for the “shoulder”

of the histogram peaks (corresponding to the main tissues). Based on examining

a number of MRI scans, percentiles of 4/0.5/4% for, respectively, T1/T2/PD were

determined as satisfactory estimators for the location of the histogram peaks’ shoul-

ders, on brain scans spatially registered to the Talairach stereotaxic space (if the

skull was removed in a pre-processing procedure, 2/0.25/2% are adequate percentile

values).

4.2.3 Large sets

This section concerns a practical implementation issue: the pruning algorithm can-

not work on sets of sample points that are too large, for two reasons:

1. limited data precision (see section 4.2.1); this is a problem mostly for the

single-feature case.

2. computational complexity (time, and also space) for MST computation; it is

a limiting factor primarily for the multi-feature case (see section 4.1).
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However, large sets of training points (thousands per tissue class) are needed by the

final supervised non-parametric classifier in order to perform well. Moreover, the

pruning method can occasionally fail on a particular input set of points (because it

cannot separate the main clusters), in which case all input points are rejected.

These practical problems are addressed by the following scheme:

1. Generate many small sets of points (≤ 150 points per class, see section 4.2.1),

or “chunks”, using the TPM. The set generation is done, for each tissue class,

by a uniformly-distributed random sampling of all the qualifying locations in

the class TPM.

2. Prune each (small) set separately. This can be done in parallel, if appropriate

computing facilities exist.

3. Merge all the resulting pruned (small) sets of points into a large set of points,

which is considered the final output of the pruning method. The merging is

done by simple set union; points with conflicting labelings are discarded.

4.2.4 Skull removal

A skull removal procedure (also known as skull stripping, or intra-cranial cavity

extraction) should be applied to the MRI data before feeding it to the pruning

and classification algorithms; otherwise, TPM-selected “background” class training

points might fall on the skull, and the pruning algorithm may be confused by the

multi-cluster distribution of the background class. Many such automatic procedures

exist [33, 36, 49, 65, 79, 80].

4.3 Final classification

As explained in section 3.2, it is desirable to use a non-parametric classifier (which

is capable of modeling data distributions which are not multi-variate Gaussian,
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or Normal) for the final supervised classification of all the voxels in the 3D MRI

volume.

The supervised classifier proposed here is the classic k nearest-neighbor (kNN)

classifier. Given a training set of samples (which is read and stored during initializa-

tion), for each data point to be classified it computes the point’s closest k training

samples (using a given distance measure in feature space); then, a classification de-

cision is made by taking a vote among these k closest samples. Any ties are resolved

by comparing the sums of the feature space distances of the two competing groups.

Previous work [42] showed the artificial neural network (ANN) classifier to per-

form well on MRI brain data. This neural network is trained using a so called error

back-propagation iterative algorithm (a gradient descent technique). An experi-

ment was done to compare the performance of ANN and kNN (k = 45, Euclidean

distance) on real, multi-spectral (T1/T2/PD), MRI data; the results are shown in

Figure 4.3. It can be seen that kNN overall is more robust (has less variability in

performance), and is (on average) more accurate when false positives are present in

the training set.

Moreover, the ANN classifier has many parameters that need to be tuned to the

particular application: number of nodes in the hidden layer, and training-related

parameters (learning rate, momentum, maximum number of training iterations,

stopping criterion). The behavior of the training process, and the decision bound-

aries encoded in the trained network are not easily understood.

On the other hand, the kNN classifier has only two parameters: k, and n (the

number of training samples). Their influence on classifier’s performance (error prob-

ability) is more clear:

• n needs to be as large as is practical in order to get a good estimate of the

true feature space class distributions (good data sampling).

• Intuitively, k should be “large” in order to use as much evidence as possible;
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on the other hand, k should be no more than a small fraction of n in order to

keep the k-nearest samples in a relatively small feature space neighborhood of

the data point to classify [28]. Quantitatively, it was shown [25, 66] that if k

satisfies both of the following two conditions:

lim
n→∞

k =∞

lim
n→∞

k

n
= 0

then the kNN classifier (for n → ∞) will give an optimal (minimum) error

probability. In practice n is finite, so k has to be chosen more carefully; a

commonly used value is k =
√

n (Enas [29] suggested values of n2/8 . . . n3/8).

The computational complexity of the kNN classifier can be reduced by several

techniques (see section 4.5.5 in [28]). The implementation used in this work re-

lies on a fast nearest-neighbor lookup library developed by Mount and Arya [51],

which pre-processes the training set using box-decomposition (BD) trees [3, 4]. This

C++ library also supports other features (that are not used in this work), such as

approximate nearest-neighbor searches and distance measures less computationally

expensive than the Euclidean distance, so the kNN computational requirements

could be further reduced.

Figure 4.3 also shows that sampling the TPM at a lower τ (0.5 instead of 0.9)

improves the classification, assuming the pruning works well; this gave an additional

motivation for experimentally exploring various τ values – the topic of Chapter 5.

On the other hand, on raw training points (with false positives), a lower τ brings

worse performance – which is to be expected.
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Figure 4.1: Left : minimum spanning tree (MST) of a set of points in the plane.

Right : the result of cutting the “inconsistent” edges using method A (see page 26),

at T = 1.45. Images produced with [56].
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neighbor

roommate

Figure 4.2: Graph with two kinds of relationships (represented as edges) between the

nodes: “neighbors”, and “roommates”. The “roommate” relationship corresponds

to a zero-length edge in the spanning tree.
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Figure 4.3: Comparison of kNN and ANN classifier performance, as measured by

kappa (defined in section 2.2.3). Multi-spectral T1/T2/PD real data (section 2.2.2),

5000 training samples per class randomly extracted from the TPM at the indicated

thresholds; 18 repetitions of the experiment with different sets of training samples.

It can be seen that overall kNN has less variability in performance than ANN.

Moreover, the right-hand plot shows that sampling the TPM at a lower τ (0.5

instead of 0.9) improves the classification, assuming correct pruning. (A description

of box-plots is given in Appendix A.)
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Chapter 5

Experiments and Results

Experiments were performed in order to validate the training set pruning method,

and also the entire brain tissue classification scheme proposed here. The following

were explored:

• influence of the TPM threshold τ for training samples extraction (the TPM-s

used were the ones produced by Kollokian [42], from a group of young normal

subjects, as described on page 15).

• performance on both subject brains similar to the TPM used, and on brains

with significant morphological differences from the TPM.

• pruning method A versus method B.

• single-feature (T1 MRI only), as well as multi-feature (T1, T2, PD MRI-s)

operation.

This chapter presents the experiments and their results; a discussion and conclusions

follow in Chapter 6.
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5.1 MRI datasets

Three MRI datasets were used in these experiments:

1. realistic simulations (section 2.2.1) driven by a new custom set of brain “phan-

toms”; these are described in more detail below (section 5.1.1).

2. real T1-T2-PD (multi-spectral) scans of a young normal individual (dataset

described in section 2.2.2).

3. real multi-spectral scans of ischemia patients (who exhibit brain atrophy);

only a qualitative evaluation was performed on these data.

For the quantitative measurements (on 1 and 2 above), the “gold standard” was

the anatomical model (the “phantom”) for the simulations, and the manual clas-

sification for the real dataset. For the latter, the cerebellum was left out when

computing the various quantitative measures (since its classification was not avail-

able). However, the cerebellum was not masked out before the pruning process,

since in a practical real image analysis situation the manual classification will not

be available. For this work, instead of using an automatic skull removal procedure

(section 4.2.4), the skull was simply removed using the known “gold standard” for

the classification process.

5.1.1 Elderly brain simulations

Since the particular TPM-s used in this work represent the spatial probability dis-

tribution of a young normal population, a set of 10 realistic “phantoms” of elderly

brains1 were created as follows (based on the standard phantom – see section 2.2.1):

1Elderly subjects were chosen as their brains have a clear anatomical difference from the young

population that generated the TPM-s (see Figure 3.3).
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1. A set of 10 individual T1 scans were selected from a large database2 available

at the MNI. All are 60-70 years old, and from the same population. Half are

males, half are females.

2. These individual scans were non-linearly registered (“warped”) to the stan-

dard phantom using the ANIMAL method of Collins [17, 18].

3. The resulting deformation field was inverted and used for deforming the stan-

dard phantom, such that it looks similar to the source individual T1 scan.

The outcome is a set of 10 different “phantoms” – see Figure 5.1 for samples.

While this procedure does not produce simulated scans which are identical to the

original real T1 scans (since the non-linear registration procedure cannot match all

the differences in the cortex folding pattern), the resulting anatomical models have

known characteristics of aging brains [9]: increased atrophy, enlarged ventricles, and

so on.

All the MRI-s (T1, T2, PD) were simulated as 1mm isotropic voxel acquisitions,

with 3% noise, and with 20% INU (intensity non-uniformity). These are generally

considered typical artifact severity3 [14, 42].

5.2 TPM threshold τ

Experiments were carried out in order to study how the TPM sample extraction

threshold τ affects the performance of the pruning, and of the entire tissue clas-

sification scheme. The following experiments were performed, each with several

repetitions (for assessing the statistical significance of each resulting data point):

2Data source: Dr. Ryuta Kawashima, Sendai, Japan.
3In a practical image analysis system, an INU correction pre-processing method (such as [63])

is typically employed, thus the INU level may be less than 20%.
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A:

B:

Figure 5.1: A: standard phantom (column 1), and elderly brain phantoms (columns

2-4), each with three orthogonal sections. Each tissue is represented as a different

gray shade. Compared to the standard phantom (representing a young normal

individual), the “elderly” phantoms (section 5.1.1) exhibit enlarged ventricles and

overall brain atrophy (typical characteristics of aging brains).

B: T1-weighted simulated MRI images based on the phantoms above.
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1. “elderly” brain phantom simulations, with a single-feature: T1-weighted sim-

ulated MRI with 3% noise and 20% INU; 7500 input points per class, except

the τ = 0.99 data points which had only 2000 input points4; 10 different source

phantoms, each with 3 different MRI simulations (the difference was in the

shape of the INU field5, and in the noise) and 3 different sets of input points

randomly sampled based on the TPM – for a total of 30 repetitions per data

point.

2. “elderly” brain phantom simulations, with three features (T1/T2/PD); one

set (triplet) of T1, T2, PD simulated MRI-s; experiment design same as for 1,

but with only one experiment per phantom, for a total of 10 repetitions per

data point (same set of input points for all repetitions).

3. the real dataset, with a single-feature: T1 (same MRI for all repetitions);

7500 input points per class (2000 points for τ = 0.99); 10 repetitions per data

point, each with a different sets of input points randomly sampled based on

the TPM.

4. the real dataset, with three features (T1/T2/PD); experiment design same as

for 3.

In the above, when an experiment is said to have been done on 7500 points per

class, in fact it consisted of a set of 50 parallel prunings on chunks of 150 points for

simulated data, and of 125 chunks of 60 points for the real dataset (as described

in section 4.2.1, 150 points per class were chosen for the experiments on T1-only

simulated data, and 60 points per class for the experiments on the T1-only real

dataset). Although the pruning method can cope with larger sets in the multi-

feature situation, for practical reasons (such as allowing a paired comparison of the

4Because the CSF TPM only has ≈ 2200 spatial locations with values ≥ 0.99.
5The three different INU field shapes were estimated from real MRI-s [14, 42], and then scaled

for the required field severity.
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single-feature and multi-feature operation) the same point set sizes were also used

for the multi-feature experiments.

The following measures were used to quantify the number of false positives (FP)

and true positives (TP) in the point sets:

• false positives fraction (FPF) :

FP

FP + TP
× 100%

(Note: FP + TP = total number of points, before and after pruning)

• percent (pct) reduction in FPF :

FPFbefore − FPFafter

FPFbefore
× 100%

Also of interest is the fraction of the original true positives preserved by the pruning

algorithm. This fraction is important because, in practice, a large reduction in the

FPF may not be useful if it is coupled with a severe loss of true positives – this

could happen if, for example, the algorithm throws away most of the input points,

regardless of them being false or true positives.

While a positive (and large) percent reduction in FPF is desirable (as an in-

dicator of correct functioning of the pruning method), the real figure of merit in

this application is FPFafter (the rate of false positives left in the point set after

the pruning). A low FPFafter is desired, as it corresponds to a “mostly correct”

training set for the final (supervised) tissue classification stage.

Statistics regarding FPF are shown in Figures 5.2 and 5.3 for the simulated

data experiments, and in Figures 5.4 and 5.5 for the real dataset experiments. It

can observed that for all experiments (with the sole exception of multi-spectral

simulations with τ = 0.1), the pruning reduces the FPF in the point set. Also, as

τ decreases, the fraction of true positives preserved decreases.

A comparison of Figures 5.2 and 5.3 suggests that, for the elderly brain sim-

ulations, with method A, for τ > 0.1, the reduction in FPF is slightly less in
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the multi-feature (T1-T2-PD) than in the single-feature operation (T1 only). For

τ ≥ 0.3, method B performs similarly on single-feature and multi-feature data, but

erratically on multi-feature data for τ < 0.3.

For the real dataset, a comparison of Figures 5.4 and 5.5 suggests that with

method A, for τ > 0.1, a slightly higher reduction in FPF is achieved in the single-

feature (T1 only) than in the multi-feature (T1-T2-PD) operation. For τ ≥ 0.5,

method B performs similarly on single-feature and multi-feature data.

Further measurements of practical interest derived from all these experiments

are the topic of the next section.

5.3 Final tissue classification

It is important to study how pruning influences the results of the final supervised

tissue classification stage. Based on the experimental observations of section 4.3,

the kNN supervised classifier was used, with k=45. Sample classification results

(images) are given in Figures 5.6 and 5.7.

For a quantitative figure of merit, the kappa similarity measure (defined in sec-

tion 2.2.3) was computed against the gold standard; kappa was only computed over

the brain area (including the CSF between the cortex and dura/skull), as indicated

by the gold standard. For comparison, the plots also show the result for an exper-

iment with τ = 0.99 and no-pruning (“raw”): the supervised classifier was simply

trained with the raw samples extracted from the TPM at τ = 0.99 (this is the

traditional method [42]).

The resulting values for the simulated data experiments are plotted in Figures 5.8

and 5.9. Kappa results for the real dataset experiments are given in Figures 5.10

and 5.11. For all experiments, the sharp decreases in kappa for some low τ values can

be explained by the corresponding plots of “true positives preserved” (Figures 5.2-

5.5): if the number of training points kept by the pruning method is too low, the
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Pruning method A: Pruning method B:
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Figure 5.2: Simulations (elderly brain phantoms), T1-only: There is no significant

difference between methods A and B. For τ ≥ 0.3, FPFafter ≤ 3% (and does not

vary significantly with τ), and ≥ 50% of the true positives in the input are preserved.

(see page 43 for the definition of the measures plotted above, and Appendix A for

details on box-plots)
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Pruning method A: Pruning method B:
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Figure 5.3: Simulations (elderly brain phantoms), T1-T2-PD: The plots suggest

that method B performs better than A (higher reduction in FPF, thus lower

FPFafter); however method B breaks down for τ < 0.3 (unlike method A, which

still performs satisfactorily at τ = 0.1). With both methods, for τ ≥ 0.4, FPFafter

remains low (≤ 5%), and ≥ 50% of the true positives in the input are preserved.
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Pruning method A: Pruning method B:
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Figure 5.4: Real dataset, T1-only: There is no significant difference between meth-

ods A and B. For τ ≥ 0.6, FPFafter ≤ 6% (and does not vary significantly with τ),

and > 50% of the true positives in the input are preserved.
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Pruning method A: Pruning method B:
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Figure 5.5: Real dataset, T1-T2-PD: The plots suggest that method B performs

better (higher reduction in FPF) for τ ≥ 0.5, but performs poorly for τ < 0.5 (very

few true positives preserved); method A is superior for τ ≤ 0.3. With both methods,

for τ ≥ 0.7, FPFafter is satisfactory (≤ 9%), and ≥ 50% of the true positives in the

input are preserved.
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performance of the final kNN classifier is poor.

5.3.1 Qualitative evaluation on additional real data

The pruning method (and the entire tissue classification scheme proposed here) was

also validated on additional real multi-spectral MRI data6 acquired as part of a

clinical trial of patients diagnosed with ischemia. Since no “gold standard” was

available for these data, only a qualitative evaluation of the resulting classification

was possible. As before, 7500 raw training points per class were selected based on

the TPM-s; the pruning was done on chunks of 150 points (per class) at a time.

However, unlike in the previous experiments, the skull was not removed before the

classification process.

The results for a sample dataset are shown in Figure 5.12. This particular

dataset exhibits severe brain atrophy (i.e. significant morphological difference from

the “young normal” TPM), which is the likely cause for the poor performance of

the classification without pruning.

6T1: 1 mm
3 resolution, T2/PD: 1x1x3.5mm resolution; same pre-processing as for the other

real data (section 2.2.2).
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Figure 5.6: Simulations (elderly brain phantom), T1-T2-PD: Left: anatomical

model (“gold standard”), right: final classification result for method A, τ = 0.50,

multi-feature (T1-T2-PD) operation. The different gray levels correspond to the

different classes.

Figure 5.7: Real dataset, T1-T2-PD: Left: manual classification (“gold standard”),

right: final classification result for method A, τ = 0.90, multi-feature (T1-T2-PD)

operation. The different gray levels correspond to the different classes.
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Pruning method A: Pruning method B:
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Figure 5.8: Simulations (elderly brain phantoms), T1-only: Final classification

kappa (see section 5.3). For comparison, “0.99(raw)” shows the result for no prun-

ing. There is no significant difference between methods A and B. For τ = 0.2...0.8,

the pruning gives a statistically significant improvement over “0.99(raw)” (box

notches do not overlap), with the highest kappa-s for τ = 0.2...0.6.
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Pruning method A: Pruning method B:
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Figure 5.9: Simulations (elderly brain phantoms), T1-T2-PD: Final classification

kappa. For comparison, “0.99(raw)” shows the result for no pruning. The plots

suggest that method B performs overall better than A, and that the highest kappa

is at τ = 0.5 for both methods. For τ = 0.3...0.9, the pruning gives a statistically

significant improvement over the “raw” experiments (box notches do not overlap).
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Pruning method A: Pruning method B:
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Figure 5.10: Real dataset, T1-only: Final classification kappa. For comparison,

“0.99(raw)” shows the result for no pruning. The plots do not show a significant

difference between the two methods. For τ ≥ 0.5, the pruning gives a statistically

significant improvement in kappa over the “raw” experiments (box notches do not

overlap), with the highest kappa-s obtained for τ = 0.99.
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Pruning method A: Pruning method B:
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Figure 5.11: Real dataset, T1-T2-PD: Final classification kappa. For comparison,

“0.99(raw)” shows the result for no pruning. Method A produces a statistically

significant improvement for τ = 0.7...0.9, with the highest kappa for τ = 0.9.

However, method B does not improve kappa over the no-pruning case, and breaks

down for τ < 0.5.
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Multi-spectral MRI (T1, T2, PD) :

Final tissue classification result :

Figure 5.12: Qualitative evaluation: real multi-spectral dataset 2 (ischemia patient):

The brain tissue classification with no pruning (“raw”, τ = 0.90 and τ = 0.99)

is poor – note that some voxels inside the ventricles were mis-classified as white

matter. Both pruning methods A and B (τ = 0.90) give significantly better tissue

classification. (the different gray levels correspond to the different classes)
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Chapter 6

Discussion and Conclusions

6.1 Results

Based on the experimental results presented in Chapter 5, it can be concluded

that the MST-based pruning method achieves its goal of reducing the rate of false

positives (mis-labeled samples) in the point set selected using the TPM-s. Moreover,

the pruning improves the final tissue classification.

The pruning method does especially address the situation when the subject’s

brain anatomy is significantly different than the tissue spatial probability distribu-

tion represented by the model (TPM). In this situation, simply using the raw set

of training samples extracted based on the prior spatial tissue probability (TPM)

is even less adequate.

The TPM used for these experiments was produced from a “young normal”

population. Thus, the results on elderly and diseased brains are more important

than the results on the young normal dataset.

Here is a summary and discussion of the experimental results presented in Chap-

ter 5.

56



False positives fraction (FPF): Most importantly, in all the quantitative ex-

periments the pruning method reduces the FPF in the point set. However, as the

TPM point selection threshold τ decreases, the fraction of true positives preserved

by the pruning also decreases (i.e. the size of the pruned point set decreases), and

the FPFafter increases. Nevertheless, for any τ ≥ 0.4 for the elderly brain simula-

tions, or any τ ≥ 0.7 for the real young-normal dataset, more than half of the true

positives are preserved, and the FPFafter does not vary significantly and remains

low (≤ 5% for simulations, and ≤ 9% for the real dataset).

Final classification result: The results of the complete tissue classification scheme

proposed here were judged against the ones of the traditional “0.99(raw)” method

(consisting of TPM τ = 0.99 and no pruning, and the same final supervised kNN

classifier). On real MRI scans from a database of ischemia patients, the pruning

(both method A and B) produced a clear qualitative improvement over the raw

method (see Figure 5.12).

In the quantitative experiments on elderly simulated scans, the pruning improved

the kappa similarity measure for all τ ≥ 0.3; this improvement was statistically

significant (p < 0.05) for τ ≤ 0.8 on single-spectral (T1 only) data, and for τ ≤ 0.9

on multi-spectral (T1-T2-PD) data. The improvement was from kappa = 0.90 to

kappa = 0.95 on multi-spectral data, with pruning method B, and τ = 0.5.

On the real scans of a young-normal subject, the kappa had a small improvement

(statistically significant, p < 0.05) for τ ≥ 0.5, in T1-only operation. However, in

the multi-spectral (T1-T2-PD) operation the pruning did not always improve the

kappa (although the difference was less than 0.02 for all τ ≥ 0.5). Nevertheless,

this is not a “failure” of the pruning method: since the subject was part of the

same population as the one represented by the TPM-s, the no-pruning (“raw”)

classification works satisfactorily by itself.
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Method A versus method B: These two MST breaking methods are defined

on page 26. Intuitively, pruning method A should be able to adapt itself to the

local conditions in the graph, while method B assumes that clusters have similar

variance in feature space (which is not necessarily so, as shown in section 3.2). No

significant difference between the two methods was observed in the single-feature

experiments (T1-only).

However, in the multi-feature experiments method B dropped more of the orig-

inal true positives (i.e. produced smaller output point sets) than method A. More-

over, method B exhibited a sharp break-down in performance for τ < 0.3 on elderly

simulated data (Figure 5.3), and for τ < 0.5 on the young-normal real MRI dataset

(Figure 5.5). In contrast, method A performed satisfactorily even at low values of

τ .

In terms of the final classification results (on multi-spectral data), the experi-

ments did not show a clear difference between the two methods (except for the low

τ values where method B breaks down). The differences in kappa were ≤ 0.012

on elderly simulations (Figure 5.9), and ≤ 0.04 on the young-normal dataset (Fig-

ure 5.11). On the ischemia patient real data, no clear qualitative difference can

observed between the two methods (Figure 5.12).

6.1.1 Limitations

The brain tissue classification approach proposed here has a few limitations:

• It requires a prior model: a tissue probability map in a stereotaxic space.

However, for human brains this is generally available.

• The training set pruning method requires prior knowledge about the relative

position of the class clusters in feature space. In the current implementation,

this is specified as an ordering along one of the feature axes. Although the

T1-weighted image intensity was used here, other MRI contrasts (such as T2)
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can fulfill this role.

• Not all of the false positives are “pruned”, and part of the true positives in

the original (“raw”) training set are discarded as well. This was observed to

be due to the pruning method’s occasional difficulty in separating the main

clusters – the iterative graph breaking procedure (described at page 26) gets

to low values of T , which leads to excessive fragmentation of the graph, and

to smaller main clusters. The cause of this behavior is the (partial) overlap of

the class distributions in feature space.

6.2 Summary of contributions

1. A completely automatic procedure for brain tissue classification from MR

anatomical images was described. The procedure uses for initialization prior

tissue spatial probability maps (an “anatomical atlas”, or “model”) in a stan-

dard, brain-based coordinate system (“stereotaxic space”).

2. A novel method was developed for eliminating (“pruning”) the mis-labeled

samples from the set of points suggested by the model. This pruning method

uses a minimum spanning tree graph-theoretic approach in feature space, to-

gether with domain information specific to this application.

3. The classification procedure is robust against morphological differences be-

tween the subject of the classification and the particular model used for initial-

ization. Previously published methods (section 2.3) reportedly do not achieve

this.

4. The classification procedure is robust against variations in the source MRI

data — the use of the pruning method allows the classifier training (initial-

ization) points to have a better spatial coverage of the brain than simple
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model-based methods (that are restricted to brain areas with high prior tissue

probability).

5. The performance of the procedure was demonstrated by quantitative and qual-

itative experiments on both real and simulated MRI data, and on subjects who

are both similar and dissimilar to the model used for initialization. The quan-

titative experiments were repeated for achieving statistical significance. In

particular, the pruning method gives a statistically significant improvement

of classification versus a simple model-based initialization method.

6. The entire procedure is non-parametric in that it does not make any assump-

tions about data distribution in feature (image intensity) space. Many existing

methods assume multi-variate Normal (Gaussian) class intensity distributions

and, as discussed in section 3.2, this is can be a questionable assumption.

7. The only requirement of the pruning method is that the majority of the sample

locations selected using the model are in fact correctly labeled (this condition

should hold for each of the tissue classes in the classification process).

8. This procedure will provide better tissue classification than existing methods

for research and clinical studies of the development, functioning, and pathol-

ogy of the human brain.

6.3 Future work

Several directions for future research can be envisioned:

• The finite spatial resolution of MRI (partial volume effect) causes the blurring

of the interface between tissue types in the image. Since the inter-tissue

boundary voxels do not contain pure tissue but a mix of two (or more) tissue

types, their MR signal intensity will lie between tissue clusters in feature space;
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this can hamper the pruning method. It would be desirable for the method

to put less trust in the intensity of such voxels than in the intensity of pure

tissue voxels. The boundary (partial volume) voxels will be located in high

gradient areas of the MR image, thus integrating the gradient information

into the feature space is worth exploring.

• The presence of multiple points at the same location in feature space (caused

by the limited numerical precision of the intensity data, see section 4.2.1) could

be considered by the graph breaking method: intuitively, it should be more

difficult to break an edge between two nodes that have many “roommates”. A

weighting could be applied to the edge lengths according to the true number

of points at their ends.

• Because of the inherent limitations of the MRI simulations used in this work

(section 2.2.1), it would be interesting to perform additional quantitative per-

formance measurements on real MRI-s of elderly or diseased subjects, or on

subjects with space-filling brain lesions (e.g. tumors, stroke), even if only a

partial manual classification is available for these scans.

• Regarding the kappa measure of the classification performance, it would be

interesting to try other similarity measures as well. For example, a new sim-

ilarity measure based on information theory was recently proposed [7]. Also,

it would be desirable to use a measure which weighs differently various mis-

classifications, according to their spatial position in the brain – this could be

done by using something like “weighted kappa” [16], or by using the standard

kappa measure but only on smaller, specific regions of the brain which are

typically poorly classified.
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Appendix A

Box Plots

This thesis presents experimental results using the so called “box and whisker” plots

(produced using Matlab [68]). The meaning of the various graphical symbols on the

boxes is as follows:

• box has (horizontal) lines at the lower quartile (25% percentile), median, and

upper quartile (75% percentile) values of the data sample.

• lateral “notches” of the box represent a 95% confidence interval about the

median of the sample; hence a side-by-side comparison of two notched boxes

is the graphical equivalent of a t-test (if notches do not overlap, then p ≤ 0.05).

• whiskers show the extent of the rest of the data; their length is ≤ 1.5× the

height of the box.

• outliers (represented as “+”) are data points beyond the ends of the whiskers.
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Appendix B

Glossary and Abbreviations

cerebellum A large structure at the lower back of the human brain. It has fine

structures of intertwined gray and white matter.

cerebro-spinal fluid (CSF) Substance found surrounding the brain and within

the ventricular system of the brain and spinal cord.

classification See tissue classification.

false positive See Table 2.1.

feature space A coordinate system, typically used by a classifier, where the

coordinate along each axis is given by the value of a feature (a measurement).

gold standard The reference, assumed to be the “true answer”, against which a

segmentation or classification result is evaluated.

intensity non-uniformity (INU) An artifact inherent to the MR imaging pro-

cess. It is usually observed as a smooth, low spatial frequency variation in the

image intensity. See also section 2.1.

k nearest-neighbor (kNN) classifier See section 4.3.
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kappa A chance-corrected similarity measure between two image segmentations.

See section 2.2.3.

magnetic resonance imaging (MRI) Non-invasive medical imaging technique

that can produce high-resolution images with good contrast of the different

biological soft tissue types.

MNI Montreal Neurological Institute (McGill University).

partial volume effect Due to the finite resolution of the MR imaging process,

the image voxels (typically about 1 mm3 or larger) may contain a mixture of

more than one tissue type, which all contribute to the measured signal. This

leads to voxels of intermediate intensity at the boundary between tissues. See

section 2.1.

phantom In this thesis, a brain phantom is a digital brain model that is used

both as an input to an MRI simulator, and also as a “gold standard” for

quantitative evaluation of the automatic classification of the simulated MR

image. See section 2.2.1.

proton density (PD) image An MR image in which the intensity of a voxel is

predominantly determined by the density of hydrogen atoms present within

voxel’s spatial extent.

pulse sequence The particular arrangement of control signals in an MRI scan-

ner that produces an image. It controls image characteristics such as tissue

contrast, noise, and spatial resolution.

registration In this work, linear spatial registration is the procedure that de-

termines a linear (affine) transformation between two brain-based coordinate

systems. If the registration is performed between an individual brain image

and a standard atlas (such as Talairach’s), the resulting transformation can
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be used to resample the individual image to the stereotaxic space defined by

the atlas [20, 67]. See also stereotaxic space.

resampling The technique of changing the sampling grid of a digital image.

Rician distribution The distribution of the magnitude of the sum of a constant

and a complex Gaussian-distributed random variable.

segmentation In this thesis, a brain segmentation is the set of class (tissue type)

labels assigned to each voxel in the image volume.

stereotaxic space A standard frame of reference (coordinate system) defined

by anatomical landmarks of the human brain. It allows the removal of affine

(translation, rotation, scale) differences between individual brains. The par-

ticular stereotaxic space used at the MNI (and in this work) is the one defined

by the Talairach atlas [67]. See also registration.

supervised classifier A classifier that is trained (learns correct behaviour) in a

supervised fashion: a sample set of data is supplied, along with the correct

classes (the “true answer”) for all these data.

T1 image An MR image in which the contrast between tissues is largely due to

the difference in the intrinsic tissue property T1.

T2 image An MR image in which the contrast between tissues is primarily given

by the difference in the T2 tissue property.

tissue classification In this context, tissue classification is the procedure of la-

beling each image voxel with a tissue type. Also called “tissue segmentation”.

tissue probability map (TPM) A stereotaxic space TPM of a given tissue is

a spatial probability distribution representing a certain subject population.

See section 3.1.
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training set The set of correctly labeled sample data used to train a supervised

classifier.

true positive See Table 2.1.

unsupervised classifier A classifier that does not have access to samples of

correctly labeled data. Sometimes, not even the number of classes is known.

ventricles Cavities deep inside the brain, which are part of the central nervous

system’s ventricular system (filled with cerebro-spinal fluid). The first and

second ventricle are the large pair of cavities visible at the center of a brain

image.

voxel A voxel is for a 3-dimensional (3D) digital image what a pixel is for a 2D

image, i.e. an image element.
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