
Voxel-wise morphometry using RMINC

Jason Lerch

February 21, 2006

1 Introduction

This document provides a worked example of voxel-wise morphometry using
the RMINC library to R. The applications include Voxel Based Morphometry
(VBM) or any method in which the goal is to produce a statistical test at every
voxel of a series of �les. The assumption is that the data of interest at every
voxel is a scalar (i.e. a single value rather than a vector).

This document does not talk about preparing the data. For an overview of
the steps necessary to perform VBM, for example, see http://wiki.bic.mni.
mcgill.ca/index.php/VoxelBasedMorphometry

1.1 About R

The steps described herein use the R statistical environment (http://r-project.
org). It is possible to simply follow this tutorial without having used R before,
though everything will make a lot more sense with some basic exposure to that
excellent (and free) program, as I won't go into any details about particular R
commands. The web-site listed above has fairly extensive documentation, and
there are some good books on R available as well.

1.2 About RMINC

RMINC is an R library designed to work with MINC2 �les. It provides func-
tionality to read and write MINC2 volumes, and to apply arbitrary R functions
at every voxel of a set of �les. There are also three specialized loops written to
perform t-tests, Wilcoxon Rank-Sum tests, and linear models at every voxel.

1.3 About MINC

MINC is an excellent library, �le format, and set of applications to work with
medical imaging data. Note that RMINC needs to use MINC2 volumes and the
MINC2 library and will not work with MINC1 �les. Conversion to MINC2 from
MINC1 is easily accomplished using mincconvert. The conversion is thankfully
lossless.

1

2 Input data

Once the �les have been processed, the easiest way to proceed is by settting up
a text �le containing all the necessary information about each scan. This �le
should be comma or space separated, have on row per scan, with each column
containing info about each scan. One of the columns should contain the �lename
pointing to the MINC volumes to be processed. An example might look like the
following:

file,gender,scale
filename1.mnc,Male,0.98
filename2.mnc,Female,0.91
filename3.mnc,Female,0.92

Notice how the �rst row contains a header. This is optional, but makes later
access to the data easier and is therefore recommended.

The next step is to actually load this �lename into R. The steps are given
below:

> library(RMINC)

> library(xtable)

> glim.file <- "/projects/mice/jlerch/male-female/all/analysis/male-female-scales.glim"

> gf <- as.data.frame(read.csv(glim.file, header = T))

The two library commands load the RMINC and xtable libraries into R.
xtable is only necessary for display purposes in this manual (which, by the way,
is being written using Sweave, a tool for combining R with latex). The variable
glim.file is then assigned the location of the input data �le, which in turn is
read into the gf variable.

> xtable(gf[c(1, 2, 3, 22, 23, 24), c(2, 4, 5, 6)], caption = "GLIM File")

gender weight ID scale
1 Male 24.00 RM1 0.94
2 Male 27.00 RM2 1.13
3 Male 28.30 RM3 0.98
22 Female 20.60 RF2 0.92
23 Female 20.00 RF3 1.04
24 Female 21.75 RF4 0.95

Table 1: GLIM File

The little code fragment and table above just shows what a subset of the gf
variable looks like. To get a feel for the data and some of the RMINC functions,

2

the �rst �le is then read and a histogram produced (for the curious, the �les
used in this example actually consist of log Jacobians of deformation �elds, not
voxel density maps usually used in VBM).

> first.file <- minc.get.volume(gf$file[1])

Sizes: 141 274 210
Start: 0 0 0
Count: 141 274 210

> hist(first.file)

Histogram of first.file

first.file

F
re

qu
en

cy

−0.6 −0.4 −0.2 0.0 0.2 0.4

0
50

00
00

10
00

00
0

15
00

00
0

20
00

00
0

25
00

00
0

Two things happened here. The �rst was a call to minc.get.volume, which
returns a 1D array of size dimension1 * dimension2 * dimension3 (notice that
the dimension sizes are printed out when this command is run). RMINC tends
not to care about the 3D nature of these volumes. The main reason is that for
the majority of statistical purposes neighbourhood information does not matter,
as long as all input �les share the same sampling (which is assumed). Moreover,
if you really want to perform image processing operations that need this type
of neighbourhood information - and thus cannot be vectorized by R - then you
probably should not be using R in the �rst place.

3

The second command plots a histogram of the entire volume. Fairly self-
explanatory.

3 Voxel-wise analyses

RMINC has the ability to execute arbitrary R functions at every voxel. This is
done by looping over all voxels, creating a vector x of the same length as the
number of volumes, the real value of each subject at that voxel being assigned
to the vector. To illustrate with an example, to get a map of the mean values
of all subjects, one would execute the following:

> mean.map <- minc.apply(gf$file, quote(mean(x)))

Number of volumes: 40
Volume sizes: 141 274 210
In slice
0 1 2 ... 140
Done

> minc.write.volume("/tmp/mean.mnc", gf$file[1], mean.map)

Sizes: 141 274 210
Range: 0.354660 -0.348319

This is what happened: the R function mean was applied at every voxel to
of all �les, producing a 1D array called mean.map. The command minc.apply
needs two arguments: a list of �lenames, and a string to be evaluated at every
voxel. The string should contain a valid R expression, and should do something
to the variable x. It should also produce a single scalar as output. A third, and
optional, argument is a string containing the �lename of a mask volume, which
will result in the function only being evaluated where the mask is not 0.

After the mean was computed, it was written to a MINC2 �le. minc.write.volume
needs three argumets: a string containing the �lename to be written to (note
that it will produce an error if this �le exists), a string containing an existing
MINC2 �le which the new output will be like (think dimensions, step sizes, etc.),
and the variable containing the data.

A slightly more complex example involves using the built in t.test function
to compute a t.test at every voxel.

> mask <- "/projects/mice/jlerch/male-female/all/analysis/mask.mnc"

> f <- function(x) {

> t.test(x ~ gf$gender)$statistic

> }

4

> t <- minc.apply(gf$file, quote(f(x)), mask)

> minc.write.volume("/tmp/t-test.mnc", gf$file[1], t)

Here a function is created, which simply calls t.test comparing the voxel to
the gender assignement from the input �le. Only the statistic is output. Note
that, since the third argument is present, this test is only evaluated inside the
mask. The �le is then output.

3.1 The need for speed

minc.apply is tremendously powerful since it allows any R function to be used,
though a little work might be necessary to coerce it to only output a single scalar.
It can be, however, excruciatingly slow. The most common useful functions
have thus been entirely rewritten in C. The di�erence is noticeable. For a t-test,
for example, the above bit of code takes over half an hour to complete. The
equivalent using the C functions (explained below), takes less than 7 seconds 1

The function in question is minc.model. It can, at the moment, do three
things: t-tests, Wilcoxon Rank-sum Tests (a.k.a. Mann-Whitney U tests), and
linear models. They are explained in turn.

The t-test version of minc.model needs two arguments: a list of �lenames, a
vector of group assignments (presented in the same order as the �lenames. The
latter should evaluate to 1 or 0 when cast to a double. A mask can be speci�ed
as an optional argument. The same holds for the Wilcoxon Rank-sum test.

> t2 <- minc.model(gf$file, gf$gender == "Female", "t-test")

Method: t-test
Number of volumes: 40
Volume sizes: 141 274 210
In slice
0 1 2 ... 140
Done

> w <- minc.model(gf$file, gf$gender == "Female", "wilcoxon")

Method: wilcoxon
Number of volumes: 40
Volume sizes: 141 274 210
In slice
0 1 2 ... 140
Done

1These numbers using the same 40 volumes of size 141 by 274 by 210, performed on an

AMD 2.6 Ghz 64-bit processor.

5

> minc.write.volume("/tmp/t-test2.mnc", gf$file[1], t2)

Sizes: 141 274 210
Range: 10.338005 -11.537318

> minc.write.volume("/tmp/w-test.mnc", gf$file[1], w)

Sizes: 141 274 210
Range: 400.000000 0.000000

Notice how the second argument is forced to evaluate to 0 or 1 (or TRUE
or FALSE) by doing an explicit check against one of the groups.

Linear models are slighlty di�erent. The second argument should be a ma-
trix, which is most easily obtained by using the R function model.matrix. This
is best illustrated by an example:

> l <- minc.model(gf$file, model.matrix(file ~ gender, gf), "lm")

Method: lm
Number of volumes: 40
Volume sizes: 141 274 210
N: 40 P: 2
In slice
0 1 2 ... 140
Done

> minc.write.volume("/tmp/lm.mnc", gf$file[1], l[, 2])

Sizes: 141 274 210
Range: 10.338005 -11.537318

The output above should actually be the same as t2. Unlike the t-test or
wilcoxon version of minc.model, the lm version actually produces a matrix as
an output, which has as many rows as there are voxels, and as many columns
as there are terms in the model matrix. In the above case there are two terms:
the intercept plus the gender term, which is why only the second one (the
gender term) is written to �le. The values output are t-statistics representing
the marginal signi�cance of each term.

A quick note about memory usage: both minc.apply and minc.model make
use of a slice loop construct. In other words, an entire slice for each volume
being evaluated is loaded into memory at a time, but no more. This is a lot
friendlier than loading entire volumes into memory, but might still be too much
for either vast numbers of volumes or extremely large volumes.

6

4 Plotting

R is a marvelous environment for plotting. RMINC makes this available by
allowing for easy access to individual voxels. The relevant commands are illus-
trated below:

> voxel <- minc.get.voxel.from.files(gf$file, 69, 167, 105)

> plot(voxel ~ gender, gf)

Female Male

−
0.

10
−

0.
08

−
0.

06
−

0.
04

−
0.

02
0.

00

gender

vo
xe

l

The function minc.get.voxel.from.files takes four arguments: a list of
�lenames, and the voxel coordinates to get. Note that these coordinates are in
the dimension order of the volumes - in other words, if they are ordered Z-Y-X,
then the arguments should be ordered in Z-Y-X as well.

5 Thresholding

Thresholding is a great example of why performing these voxel wise analyses
inside R is a good thing. Take, for example, the following code, which generates
p-values from the earlier created t-statistics and then adjusts them based on the
False Discovery Rate:

7

> p.values <- pt(t2, 38)

> min(p.values)

[1] 2.775328e-14

> p.fdr <- p.adjust(p.values, "fdr")

> min(p.fdr)

[1] 1.251389e-09

Two R functions are used - the �rst to generate p-values from the t-statistics
(given 38 degrees of freedom), the second to adjust them for multiple compar-
isons using the FDR technique. The above is a bit misleading, however, since
controlling for multiple comparisons is best done inside a mask (i.e. just the
brain) rather than the whole volume. This too is easily done:

> mask <- "/projects/mice/jlerch/male-female/all/analysis/mask.mnc"

> mask.volume <- minc.get.volume(mask)

Sizes: 141 274 210
Start: 0 0 0
Count: 141 274 210

> p.fdr.mask <- vector(length = length(p.fdr), mode = "numeric")

> p.fdr.mask[mask.volume > 0.5] <- p.adjust(p.values[mask.volume >

+ 0.5], "fdr")

> minc.write.volume("/tmp/fdr-corrected-p-values.mnc", gf$file[1],

+ p.fdr.mask)

Sizes: 141 274 210
Range: 1.000000 0.000000

The key di�erence to the above is just the array indexing used to restrict
the thresholding operation.

6 Misc.

There are two other functions that might be of interest: minc.get.hyperslab
and minc.get.volume. The latter was already illustrated in an early example,
the former is similar in that it takes a �lename as an argument, as well as a
vector of length 3 of the starts, and a same-sized vector of counts. These should
again be given in the same order as dimension ordering of the volume.

8

