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Abstract

The objectives of this study were to evaluate the correlations of the volumes of the gray matter and white matter with age, and the
correlations of the tissue probabilities of the gray matter and white matter with age and several cerebrovascular risk factors. We obtained
magnetic resonance (MR) images of the brain and clinical information from 769 normal Japanese subjects. We processed the MR images
automatically by correcting for inter-individual differences in brain size and shape, and by segmenting the MR images into the gray matter
and white matter. Volumetry of the brain revealed a significant negative correlation between the gray matter volume and age, which was not
observed between white matter volume and age. Voxel-based morphometry showed that age, systolic blood pressure, and alcohol drinking
correlated with the regional tissue probabilities of the gray matter and white matter.
© 2003 Elsevier Inc. All rights reserved.
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1. Introduction

Several factors are associated with volume or struc-
tural change of the human brain. Studies using magnetic
resonance (MR) imaging or computed tomography have
revealed a decrease in brain volume and an increase in
cerebrospinal fluid (CSF) space with age[7,11,17,18,30,
34,38,39,48]. These changes are also observed to a signif-
icantly greater extent in individuals with elevated blood
pressure[13,40,42,43,51]or who are heavy alcohol drinkers
[22,33,35,36].

On the other hand, the volume change of the white mat-
ter with age is still controversial. Several recent studies in-
dicated that a significant total white matter volume loss is
not observed with age[17,37,38], while other studies indi-
cated otherwise[19,39]. Regarding cerebrovascular risk fac-
tors, MR imaging studies have found a significant reduction
white matter volume in alcoholics[24,33].
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However, most of the above studies focused on specific
factors or specific regions of the brain, or were based on a
small number of subjects, or were carried out with limited
age windows.

In recent years, the techniques for correction for inter-
individual differences in overall brain size and shape[8],
and fully automated classification of MR images into gray
matter, white matter, and CSF space[15] have been devel-
oped. Automated classification is not operator-dependent,
so it is possible to analyze a number of MR images objec-
tively. These methods enable us to perform a voxel-based
morphometry[3].

To our knowledge, there are no published in vivo MR
imaging studies on the local changes of the gray matter or
white matter with age and in relation to several cerebrovas-
cular risk factors. The objectives of this study were to eval-
uate the global volume change of the gray matter and white
matter with age and to evaluate the correlations of the tissue
probabilities of the gray matter and white matter with age
and several cerebrovascular risk factors by a voxel-based
morphometry of structural MR images and clinical data.
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2. Methods

2.1. Subjects

The subjects were Japanese volunteers recruited by the
Aoba Brain Imaging Research Center, Sendai, Japan. All
of them were normal, and were right-handed. Prior to the
acquisition of MR images, the subjects were interviewed by
medical doctors of the Institute of Development, Aging and
Cancer (IDAC), Tohoku University, to obtain the follow-
ing clinical data: history of cigarette smoking and alcohol
drinking, and present or past history of arrhythmia, diabetes
mellitus, hypertension, hypercholesterolemia, and ischemic
heart disease. Information in their educational attainment
was not collected because educational levels in Japan are
quite homogenous in the same generation regardless of eco-
nomic status. The subjects who had past history or symp-
toms of a central nervous system disease of any kind or brain
injury were excluded from this study by the interview. After
the interview, brain MR images were obtained from each
subject. The MR images were inspected by radiologists and
the images with the following findings were excluded from
this study: head injuries, brain tumors, infarctions, hem-
orrhage, multiple and extensive ischemic changes, severe
atrophies, and normal variants such as mega cisterna magna,
and arachnoid cyst (57 subjects). MR images containing
substantial noise were also excluded (143 subjects) (dupli-
cations were included). As for ischemic change, MR images
showing only the absence or punctate (diameter< 2 mm)
ischemic change were used for further analysis. Finally, 356
men (mean± S.D.; age, 45.4 ± 15.7 years; range: 16–79
years) and 413 women (mean±S.D.; age, 47.4±13.5 years;
range: 18–79 years) were selected for the present study.
The history of disease and medication, and smoking and
alcohol-drinking habits of the subjects are shown inTable 1.
The smoking index was equal to the Brinkmann index and
was expressed as follows: (number of cigarettes smoked

Table 1
History of disease and medication of each gender

Factor Medication Male
(n = 356)

Female
(n = 413)

Hypertension 48 (13%) 43 (10%)
Medication 45 37
None 3 6

Diabetes mellitus 17 (5%) 8 (2%)
Medication 15 7
None 2 1

Hypercholesterolemia 26 (7%) 37 (9%)
Medication 17 28
None 9 9

Ischemic heart disease 3 (1%) 5 (1%)
Medication 3 2
None 0 3

Arrhythmia 5 (1%) 5 (1%)
Medication 2 2
None 3 3

per day)× (years of smoking). The subjects who consume
alcohol more than once a week were designated as alcohol
drinkers. Drinking index was defined as follows: (amount of
alcohol consumed per day (we assume 33.6 ml ethanol to be
equal to 1, i.e. the volume of ethanol that is approximately
equal to one glass of wine))× (number of drinking times
per week)× (years of drinking history). The smoking in-
dices of men and women were 292.2±392.7 (mean±S.D.)
and 37.23 ± 130.8, respectively. The drinking indices of
men and women were 162.4 ± 333.9 (mean± S.D.) and
18.78 ± 77.60, respectively. Blood pressure in the right
brachial artery was measured with the subjects in a sitting
position after a 10-min rest. Written informed consent was
obtained from each subject after a full explanation of the
purpose and procedures of the study, according to the dec-
laration of Helsinki (1991), prior to MR image scanning.
Approval for these experiments was obtained from the
institutional review board of IDAC, Tohoku University.

2.2. Image collection

Brain images were obtained from each subject using the
same 0.5 T MR scanner (Signa contour, GE-Yokogawa Med-
ical Systems, Tokyo) with three different pulse sequences:
(1) 124 contiguous, 1.5-mm thick axial planes of three-
dimensional T1-weighted images (spoiled gradient recalled
acquisition in steady state: repetition time (TR), 40 ms; echo
time (TE), 7 ms; flip angle (FA), 90◦; voxel size, 1.02 mm×
1.02 mm× 1.5 mm); (2) 63 contiguous, 3-mm thick axial
planes of proton probability images (spin echo (SE): TR,
2860 ms; TE, 15 ms; voxel size, 1.02 mm × 1.02 mm ×
3 mm); and (3) 63 contiguous, 3-mm thick axial planes of
T2-weighted images (SE: TR, 2860 ms; TE, 120 ms; voxel
size, 1.02 mm× 1.02 mm× 3 mm). Prior to further compu-
tational procedures, all MR images were filmed in a con-
ventional format and inspected by experienced radiologists.

2.3. Image analysis

After acquisition, all MR images were transferred to the
Montreal Neurological Institute and were processed auto-
matically in Silicon Graphics workstations as follows. First,
intensity non-uniformity in MR data was corrected by the
non-parametric non-uniform intensity normalization method
[41]. Next, MR images were transformed into the Talairach
stereotaxic space[45] using nine rigid linear parameters,
namely three scalings, three rotations, and three translations
[8]. As a reference, brain of this transformation, we used an
average brain made up of 305 normal brains for the stan-
dardization procedure[8]. Then, tissue classification was
performed with an artificial neural network classifier[15].
This method involves classifying each pixel according to its
combination of intensities from each image type. The nature
and the precision of this method were described in detail by
Zijdenbos et al.[52]. As described inSection 2.1, using the
MR images showing absence or a slight ischemic change,
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little misclassifications were found by visual inspection. In
this study, the cerebellum and the brain stem were automat-
ically excluded from MR images using the same masks[9].
Those processes were performed on the brain MR images of
each subject independently. After the image processing, the
MR images resulted in the binary images of the gray matter,
white matter and CSF.

2.4. Volumetric analysis

The stereotactically normalized gray matter and white
matter binary images were restored to native space using
the scaling factors of the transformation into the Talairach
stereotaxic space, and the actual volumes of gray matter and
white matter were measured by summing the voxels auto-
matically. Then, we calculated “gray matter ratio,” which
is defined as the percentage of the gray matter volume di-
vided by the intracranial volume. Then, the correlations of
gray and white matter volumes, intracranial volume and gray
matter ratio with age was determined by simple regression
analysis.

2.5. Voxel-based morphometry

Statistical analysis of the local volume change of the gray
matter and white matter was carried out by statistical para-
metric mapping (SPM) (SPM99, Wellcome Department of
Cognitive Neurology, London, UK)[16] in Matlab (Math
Works, Natick, MA). The stereotactically normalized gray
matter and white matter binary images were smoothed us-
ing a 20 mm full width at half-maximum isotropic Gaussian
kernel. The smoothing made the data more normally dis-
tributed[3]. The voxel values in the resulting smoothed gray
or white matter images were referred to as gray or white
matter probability. Gray or white matter probability means
the probability of a voxel being gray and white matters, re-
spectively. To investigate the regionally specific effects of
each factor on the imaging data, multiple regression analy-
sis was performed. The voxel values, which represent tissue
probability, were used as a dependent variable and each fac-
tor was used as an independent variable. Age, and systolic
and diastolic blood pressures were used as continuous vari-
ables. Since the distributions of both smoking and drinking
indices were highly deviated from the normal distribution
(smoking index: one peak existed at 0 in each gender; drink-
ing index: two peaks existed at 0 and about at 300 in men,
the peak existed at 0 in women), these factors were used as
discrete variables, as follows: If the subject had no history
of smoking, or no alcohol-drinking habit or drinks less than
once a week, “0” was used, and if they did, “1” was used.

For the correction of multiple comparisons, height thresh-
old was corrected andP < 0.05 was chosen.

The results of SPM image analysis were superimposed
on structural MR images on horizontal slices, which were
the average images of all subjects’ normalized T1-weighted
images, to facilitate correlation with anatomy.

3. Results

3.1. Volumetric analysis of correlation of gray and white
matter volume with age

The cross-sectional analysis showed a significant negative
correlation between gray matter volume and age in both men
(R2 = 0.58, P < 0.001) (Fig. 1A) and women (R2 = 0.39,
P < 0.001) (Fig. 1B). On the other hand, the white matter
volume did not show a significant correlation with age in
men (R2 = 0.02, P = 0.75) and women (R2 = 0.02, P =
0.70) (Fig. 2A and B). In addition, men had a significantly
steeper decline in the regression line of the gray matter vol-
ume and age than women (P < 0.05). The mean gray mat-
ter volume was significantly greater in men (599,493 mm3)
than in women (518,307 mm3), Mann–WhitneyU test,P <

0.001. In this study, we determined the intracranial volume
by summing the gray matter volume, white matter volume,
and volume of CSF space. There was no significant correla-
tion between intracranial volume and age in both men and
women (data not shown). Gray matter ratio and age showed
a significant negative correlation in both men (R2 = 0.70,
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Fig. 1. (A) Correlation between gray matter volume and age in men. (B)
Correlation between gray matter volume and age in women.
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Fig. 2. (A) Correlation between white matter volume and age in men.
(B) Correlation between white matter volume and age in women.

P < 0.001) (Fig. 3A) and women (R2 = 0.59, P < 0.001)
(Fig. 3B). There was not significant difference in the decline
with age in each gender.

3.2. Voxel-based morphometry of gray matter

Fig. 4A and Bshows the regions of the gray matter in
which gray matter probability significantly and negatively
correlated with age in men and women, respectively. The
probability in almost all cerebral cortices and the basal gan-
glia showed a significant negative correlation with age. In
particular, strong correlations were found in the bilateral su-
perior temporal gyri in men, and in the left superior temporal
gyrus and the left precentral gyrus in women.

Fig. 5A-1 and A-2shows the regions in which gray matter
probability showed a negative correlation with systolic blood
pressure in men and women, respectively. The correlations
were found in the left cuneus and right inferior temporal
gyrus in men, and in the right cuneus and left medial frontal
gyrus in women.

Fig. 5B shows the regions in which gray matter proba-
bility showed a significant negative correlation with alcohol
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Fig. 3. (A) Correlation between gray matter ratio and age in men. (B)
Correlation between gray matter ratio and age in women.

drinking in men. The correlation was found in the right su-
perior frontal gyrus, left middle occipital gyrus, left precen-
tral gyrus, left middle inferior gyrus, left postcentral gyrus,
and left cuneus. In women, no region showed significant
correlation between alcohol drinking and local gray matter
probability.

No region showed significant correlation between dias-
tolic blood pressure or cigarette smoking and local gray mat-
ter probability in each gender.

No factor showed a significant positive correlation with
local gray matter probability in each gender.

3.3. Voxel-based morphometry of white matter

Fig. 6A-1 and A-2 shows the regions of the white
matter in which white matter probability showed a sig-
nificant negative correlation with age in men and women,
respectively. The probability in almost the entire bilateral
periventricular regions of the lateral ventriculus and third
ventriculus showed significant negative correlation with
age in each gender. In particular, a strong correlation was
found in the bilateral lateral periventricular regions and
left fasciculus occipitofrontalis in men, and in the bilateral
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Fig. 4. (A) Regions of the gray matter in which gray matter probability significantly and negatively correlated with age in men. The left side of the
image represents the left side of the brain. Color scales indicatet-score. The number at the bottom left of each image indicates the value of thez-axis
in the Talairach stereotaxic space. (B) Regions of the gray matter in which gray matter probability significantly and negatively correlated with age in
women. Details are the same as in (A).

lateral periventricular regions and left corpus callosum in
women.

Except for age, there were no other factors that showed
significant negative correlation with local white matter prob-
ability in each gender.

Fig. 6B-1 and B-2shows the region in which white mat-
ter probability showed a significant positive correlation with
age in men and women, respectively. Almost entire bilat-

Fig. 5. (A-1) Regions of the gray matter in which gray matter probability significantly and negatively correlated with systolic blood pressure in men.
Details are the same as inFig. 4A. (A-2) Regions of the gray matter in which gray matter probability significantly and negatively correlated with age in
women. Details are the same as inFig. 4A. (B) Regions of the gray matter in which gray matter probability significantly and negatively correlated with
alcohol drinking in men. Details are the same as inFig. 4A.

eral white matter of subcortical region showed a signif-
icant negative correlation in each gender. In particular, a
strong correlation was found in the white matter of the left
cuneus and bilateral external capsules in men, and in the
right cuneus, right superior temporal gyrus, and left fornix in
women.

Fig. 7A shows the regions of the white matter in which
white matter probability showed a significant positive



460 Y. Taki et al. / Neurobiology of Aging 25 (2004) 455–463

Fig. 6. (A-1) Regions of the white matter in which white matter probability significantly and negatively correlated with age in men. Details are the same
as inFig. 4A. (A-2) Regions of the white matter in which the white matter probability significantly and negatively correlated with age in women. Details
are the same as inFig. 4A. (B-1) Regions of the white matter in which white matter probability significantly and positively correlated with age in men.
Details are the same as inFig. 4A. (B-2) Regions of the white matter in which white matter probability significantly and positively correlated with age
in women. Details are the same as inFig. 4A.

Fig. 7. (A) Regions of the white matter in which white matter probability
significantly and positively correlated with systolic blood pressure in men.
Details are the same as inFig. 4A. (B) Regions of the white matter in
which white matter probability significantly and positively correlated with
alcohol drinking in men. Details are the same as inFig. 4A.

correlation with systolic blood pressure in men. The re-
gions are the left cuneus and the right inferior frontal gyrus.
No area showed significant systolic blood pressure related
change in local white matter probability in women.

Fig. 7B shows the regions in which white matter proba-
bility showed a significant positive correlation with alcohol
drinking in men. The left postcentral gyrus showed a sig-
nificant negative correlation with alcohol consumption. No
area showed a significant alcohol drinking related change in
local white matter probability in women.

No other factors showed a significant positive correlation
with local white matter probability in each gender.

4. Discussion

To our knowledge, this is the first study that shows the
correlations of the tissue probabilities of gray matter and
white matter with age and several cerebrovascular risk fac-
tors.
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4.1. Volumetric analysis of correlation of gray matter and
white matter volumes with age

There was a significant negative correlation between gray
matter volume and age in each gender, whereas white matter
volume did not significantly correlate with age in each gen-
der. The results indicate that the main factor contributing to
brain atrophy with age is the volume reduction of the gray
matter, and not that of the white matter. We also showed that
men had a significantly steeper decline in gray matter vol-
ume with age than women. However, there was no signifi-
cant difference in the decline in the regression line of gray
matter ratio, which is the gray matter volume normalized by
the intracranial volume with age for each gender.

In most of the previous studies on aging, increased vari-
ability with age was found in most aging indicators. How-
ever, it was not observed in this study. Generally, the older
“normal” group in this kind of studies included subjects
with minimum pathological changes but subclinical, that is
slight to moderate ischemic changes and very small lacu-
nar infarctions. As described in the methods, we excluded
these subjects, and thus older subjects in our study might
be supernormal. This might be one of the reasons for the
absence of large deviations in older ages. This finding is
consistent with the previous study that analyzed the mor-
phometrical changes of 465 normal adult human brains with
age[17].

From several previous studies, the normal age-related de-
crease in the gray matter volume has been attributed to
decreased perfusion rate[28,29,44], and neuronal shrink-
age and/or loss with decreased cortical synaptic densities
[2,26,47], which are probably related to neuronal apoptosis
[5,6].

Regarding the factors that influence white matter volume
change, the loss of axons is associated with the loss of neu-
rons, loss of myelins, and number of glial cells. Previous
studies of autopsied normal human brains showed that ap-
proximately 10% of all neocortical neurons are lost over
one’s life span in each gender[32], and that the total volume
of myelinated fibers in elderly subjects is lower than that in
young subjects[46]. On the other hand, a parallel process of
capillary network and swelling of perivascular spaces may
increase the white matter bulk[27]. There was a substantial
increase in glial population in the paracortical white mat-
ter of the visual cortex of the elderly compared with that of
young individuals[14].

4.2. Voxel-based morphometry of correlation of gray
matter with age

We showed that the gray matter probability of almost the
entire cerebral cortex and basal ganglia showed a significant
negative correlation with age. In particular, strong correla-
tions were found in the bilateral superior temporal gyri in
men, and in the left superior temporal gyrus and the left pre-
central gyrus in women. As for precentral gyrus, the results

are consistent with a previous study[17]. The other regions,
these are new finding of this study.

4.3. Voxel-based morphometry of correlation of gray
matter with systolic blood pressure

We showed that the increase in systolic blood pressure sig-
nificantly correlated with the decrease in gray matter prob-
ability. The correlations were found in the left cuneus and
right inferior temporal gyrus in men, and in the right cuneus
and left medial frontal gyrus in women, although the mech-
anism of regional morphometric change is unknown.

We only took one-point data. As shown inTable 1, only
about 10% of the subjects had a history of hypertension. In
addition, most of those who had a history of hypertension
were medicated, and the control of hypertension was good.
Nevertheless, the elevation in systolic blood pressure had
a significant negative correlation with the morphometrical
change of the gray matter or white matter. From this result,
it is important to control systolic blood pressure whether or
not there is a history of hypertension.

4.4. Voxel-based morphometry of correlation of gray
matter with alcohol drinking

From several previous studies of alcoholic patients, it
was found that alcohol per se is responsible for structural
changes observed in heavy alcohol drinkers[20,23]. Pre-
vious studies emphasized mechanisms such as increased
production of free radicals and enhanced excitatory neuro-
transmission, which might be responsible for alcohol-related
brain atrophy[4,49]. A previous study of alcoholics revealed
a significant volume reduction of the cortical region in the
dorsolateral frontal and parietal cortices[22], and several
autopsy studies on alcoholics showed a selective neuronal
loss in the superior frontal cortex[21,24]. Studies of social
drinkers also indicated that alcohol drinking is associated
with frontal lobe atrophy[25]. We showed that areas whose
gray matter probability shows a significant negative correla-
tion with alcohol drinking are the superior frontal and pari-
etal cortices, in agreement with those reported in previous
studies.

As described in methods, the distribution of drinking in-
dex among the subjects highly deviated from the normal dis-
tribution (two peaks existed at 0 and at about 300 for the male
subjects, and one peak existed at 0 for the female subjects),
thus we divided the subjects into two groups: non-drinkers
or occasional drinkers, and habitual drinkers. In addition,
this study is a comparison not between healthy subjects and
alcoholics but among healthy subjects only. Nevertheless,
the significant differences in morphometric changes of the
gray matter and white matter between habitual drinkers and
occasional drinkers were observed, and the areas of gray
matter probability that showed a significantly negative cor-
relation with alcohol drinking were partially consistent with
the results of several previous studies.
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4.5. Voxel-based morphometry of white matter

The analysis revealed that the probability of almost the
entire periventricular white matter showed a significant neg-
ative correlation with age, while that of almost the entire
subcortical white matter showed a significant positive corre-
lation with age. Volumetric analysis showed that there was
no significant increase or decrease in white matter volume
throughout aging. Because the brain is in a closed space with
three compartments, a change in one compartment will re-
sult in the change in another. There are at least two reasons
for these: (1) white matter displacement due to the com-
plementary decrease in gray matter volume. Because the
gray matter probability in almost the entire cerebral cortex
showed a significant negative correlations with age. (2) The
expansion of the ventricles, the expansion of the ventricle
may cause white matter displacement.

4.6. Limitation of the study

The limitation of this study as a cross-sectional study is
that it cannot assess the impact of each factor on the extent of
later-life brain atrophy. Only a longitudinal study can solve
these problems. We are currently planning a longitudinal
study in order to analyze the correlation of morphometrical
change of the gray matter and white matter with age and in
relation to several cerebrovascular risk factors.

The identification of risk factors that correlate with the
structural change of the gray matter and white matter in the
brain is very important because brain shrinkage is consid-
ered to be a risk factor for cognitive decline and memory im-
pairment[1,10,12,29,31,50]. Identifying the regions of the
gray matter that are affected by each factor will help us un-
derstand the functions of the brain that are impaired by each
factor, and the mechanism underlying the pathogenesis of
brain damage and its pathophysiologic consequences.

In summary, we evaluated the change in gray matter and
white matter volumes with age, and identified the regions of
the gray matter and white matter that are affected by age and
several cerebrovascular risk factors. As a result, we found a
significant negative correlation between gray matter volume
and age in each gender, while white matter volume did not
significantly correlate with age in each gender. Age, systolic
blood pressure, and alcohol drinking in men were negatively
correlated with local gray matter probability. Age showed a
significant negative correlation with white matter probabil-
ity of almost the entire bilateral periventricular regions of
the lateral ventriculus and third ventriculus in each gender,
and also a significant positive correlation with local white
matter probability of almost the entire bilateral white matter
of subcortical regions. Systolic blood pressure and alcohol
drinking also showed significant positive correlations with
local white matter probability in men. The identification of
risk factors that reduce brain volume is very important be-
cause brain shrinkage is considered to be a risk factor for
cognitive decline.
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