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Abstract. An algorithm for improved automatic segmentation of gross
anatomical structures of the human brain is presented that merges the
output of a tissue classification process with gross anatomical region
masks, automatically defined by non-linear registration of a given data
set with a probabilistic anatomical atlas. Experiments with 20 real MRI
volumes demonstrate that the method is reliable, robust and accurate.
Manually and automatically defined labels of specific gyri of the frontal
lobe are similar, with a Kappa index of 0.657.

1 Introduction

Quantitative analysis of neuro-anatomical or neuro-functional data often requires
explicit regional identification of gross anatomical structures. Unfortunately,
manual segmentation is time-consuming, subjective and error prone. Further-
more, inter- and intra-observer variability may reduce detectability of subtle
differences when making comparisons. Automatic structure identification from
medical images is a difficult task, due to the anatomical variability between
subjects, differences in subject positioning (between patients and with respect
to standard anatomical texts), the distinct physical properties measured by the
imaging modalities, and variability of acquisition parameters such as slice thick-
ness and pixel size.

It is important to note that we differentiate between classification and seg-
mentation. We define segmentation to be the top-down regional parceling of an
image into anatomically meaningful continuous groups of voxels; classification is
defined to be the bottom-up (or data driven) labelling of individual voxels with a
tissue class label without demanding spatial contiguity for a class of voxels. The
image data represent only one measure (or a few measures in the case of multi-
spectral data) concerning the underlying anatomy, and by itself is sufficient only
for classification. Anatomically distinct regions of the brain are differentiated
on the basis of histology, cyto-architecture, connectivity, cyto-chemistry or func-
tion. As such, data from external sources are required to constrain and guide
the segmentation process.
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These external data can be represented in at least two basic forms, and this
distinction is used here as a basis to identify two main classes of methods that
have been proposed to solve the segmentation problem for different applications.
In the first, a symbolic mapping is created between features extracted from the
image volume (usually small homogeneous regions) and a symbolic model of the
anatomical structures to be segmented.

Expert rule-based systems are often used to achieve this mapping where
anatomical knowledge is stored explicitly along with segmentation heuristics in
semantic form such as an ‘if-then’ rule. Example of these procedures can be
found in the work of Raya et. al. [1], Chen et. al. [2], Dellepiane et. al. [3],
Arata and Dhawan [4, 5] and Davis et. al. [6]. Other algorithms do not explicitly
employ if-then rules to drive the segmentation. Instead, anatomical constraints
are implicitly incorporated into the procedure. Kaneda et. al. [7] use model-
guided contour extraction and 3-D reconstruction to identify dilated ventricles
in CT images. Anatomical constraints have also been used by Brummer [8,9] to
extract brain contours from MRI. Pathology (i.e., MS lesions) can be identified
using similar techniques [10].

Registration-based segmentation procedures differ from those previously de-
scribed, since they estimate a spatial transformation function that best maps
features of one data set onto another pre-labelled volume that serves as an
iconic model. These procedures are all based on the assumption that there ex-
ists a one-to-one mapping between the brain to be segmented and the one used
as a model. In one of the first 2D examples, Broit et. al. [11] used elastically-
constrained non-linear registration between a computed tomography (CT) image
and a corresponding atlas slice. This work has been continued by Bajcsy et. al. ,
extended to 3D and reposed in a probabilistic formulation [12-14]. Miller et. al.
also use a probabilistic formulation with physically based models [15-17] in or-
der to segment individual brains by registering them to a target. We too have
developed a registration-based segmentation procedure named ANIMAL (Auto-
matic Nonlinear Image Matching and Anatomical Labeling) to automatically
identify structures in the brain (described in more detail in section 2.4). It has
been shown to successfully segment basal ganglia structures [18] but it has not
been able to segment cortical structures satisfactorily (voxel-based overlap in-
dices with manual segmentations have been typically around 40-50%). There
are two reasons for this: i) there exists important variability in the topology of
sulcal and gyral patterns cortex. For example, how should one account for the
existence of a double Heschl’s Gyrus in a subject when the pre-labeled target has
only one? This is an example of where the one-to-one relationship that ANIMAL
depends on does not hold at the cortex!. ii) the deformation field estimated by
ANIMAL does not have the power to unfold the cortex of one brain and then refold
it back onto a target brain. The deformation field is bandlimited and therefore
does not have high enough frequencies to introduce (or remove) cortical folds

! Note that this problem affects not only ANIMAL, but all registration-based segmen-
tation procedures. Even though fluid-based methods may recover a continuous map-
ping, point correspondence between model and model is ill-defined.
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where needed. Still, the ANIMAL procedure is able to correctly identify structure
location, position and smooth structure boundaries.

The procedure presented here addresses these problems. By merging the com-
plementary information from ANIMAL’s non-linear deformation (i.e., low resolu-
tion region identification) with the output of a classification technique (i.e., voxel
class labels), it is possible to accurately identify specific cortical structures from
a subject’s MRI. The work presented here is most similar to that of Zachmann
et. al. [19], where an iconic model (represented by a voxelated volume, where
the value in each voxel represents the probability of existence of a structure) is
used for identification of the different fluid spaces of the brain. The work here
is different in that it is fully 3D, uses non-linear registration (instead of linear),
and is applied to the entire cerebral volume including not only the cerebrospinal
fluid (CSF) filled spaces, but deep brain structures and cortical gyri and sulci as
well.

2 Methods

2.1 Stereotaxy

The methodology presented here is highly dependent on the notion of stereotaxic
space, i.e., a standardized brain-based coordinate system that yields a method of
identification of structure location and position so that regions of interest can be
compared between brains using standard coordinates. Like many groups in brain
mapping research, we have selected to use a coordinate system similar to that
defined by Talairach [20] with the origin placed at the anterior commissure, the
z-axis running from left to right, the y-axis running from posterior to anterior
and the z-axis running from inferior to superior.

When image volumes are transformed into this space and resampled on the
same voxel grid such that all brains have the same orientation and size, voxel-by-
voxel comparisons across data volumes from different populations are possible,
since each voxel (i,j,k) corresponds to the same (z,y,2) point in the brain-
based coordinate system. The transformation to this coordinate system also
provides a means for enhancement of functional signals by averaging images
in this space [21]. This paradigm allows information (anatomical, metabolic,
electrophysiological, chemical, architectonic) from different brains to be spatially
organized and catalogued by mapping all brains into the same coordinate system
[22]. Finally, in the original Talairach spirit, the coordinate corresponding to a
particular structure, as defined by an atlas in this coordinate system, can be
used to predict its location in a subject’s brain volume when mapped into the
same space. However, normal anatomical morphometric variability limits this
predictive value since there remains variability in structure position even after
linear transformation.

We represent this variability by a statistical probability anatomy maps (SPAM)
[23]. By definition, the SPAM for any given structure is a volumetric data set
sampled in stereotaxic space, where the value at each voxel position represents
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the probability of existence of that structure at that location within the brain-
based coordinate system. At each voxel, the probability is proportional to the
number of volumes containing the structure label, divided by the total number
of volumes. For example, SPAMs can be created with voxel-by-voxel averaging
of label volumes from tissue classified data from many subjects to yield spatial
priors that can be used in classification procedures. Here the SPAMs are created
from the segmented structure labels from many subjects (see section 2.5) and
used as prior anatomical model information to drive the segmentation.

2.2 MRI preprocessing

A number of processing steps are required to achieve segmentation. We have
combined preprocessing steps (image intensity non-uniformity correction [24]),
linear registration (ANIMAL in linear mode [25]) and resampling into stereotaxic
space, cortical surface extraction (Multiple surface deformation or MsD [26,27]),
tissue classification (INSECT [28]), and non-linear registration (ANIMAL in non-
linear mode [18]) into a processing pipeline. These are represented schematically
in Fig. 1. Since the ANIMAL and INSECT procedure are merged to improve seg-
mentation, the new procedure is termed ANIMAL+INSECT. After running this
pipeline, a subject’s MRI volume can be visualized in stereotaxic space with its
corresponding tissue labels, anatomical structure labels and cortical surface —
all in 3D. The following sections describe the classification (INSECT) and nonlin-
ear registration (ANIMAL) procedures in more detail.
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Fig. 1. Processing pipeline

All MRI data are processed through the pipeline shown above. After prepro-
cessing to correct for intensity non-uniformity, the data are linearly registered
into stereotaxic space and resampled onto a 1mm isotropic grid. The resulting
volume is automatically classified into GM, WM, and CSF components and
the cortical surface is automatically extracted. The non-linear transformation
to stereotaxic space is used to warp the standard probabilistic atlas onto the
classified data, defining structures by masking tissue classes. The cortical sur-
face is used to mask non-brain from cerebral structures.
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2.3 INSECT

After image intensity non-uniformity correction, stereotaxic registration and re-
sampling, the classification strategy used by INSECT relies on a standard feed-
forward error-backpropagation artificial neural network (ANN). Since after re-
sampling an (x,y,z) location in the image lattice corresponds to the same physical
(brain) location in all MRI modalities, the intensity values of all MRI modali-
ties at that location are used as the ANN inputs. As such, the number of ANN
input nodes is equal to the number of MRI modalities, whereas the number of
output nodes is equal to the number of tissue classes (typically white matter,
gray matter, CSF, and background). The ANN is fully connected between lay-
ers, and contains one hidden layer with 10 nodes. Training of the network is
accomplished using a collection of fixed stereotaxic coordinates, derived from
the SPAMs (or probability maps, see section 2.1) of WM, GM, and CSF. Based
on these SPAMs, any spatial location included in the training set belongs to one
of the three tissue classes with a minimum likelihood of 90%. The MRI intensity
values of the subject’s MRI acquisition at these locations are used as training
input to the ANN, with the corresponding tissue class label as the target output.
After training, the ANN is used to classify each voxel of the subject data set
into WM, GM, or CSF.

2.4 ANIMAL

Identification of individual brain regions, such as the caudate nucleus, planum
temporale or superior frontal gyrus, faces two major problems. First, while
anatomists may generally agree where a structure is located, there is often no
consensus on exactly which part of the structure should be included or excluded.
Secondly, the manual labelling process is both time-consuming and the position
identified of chosen boundary is subjective, and dependent on the level and con-
trast of the image displayed. To address these difficulties we have developed
ANIMAL, an algorithm to perform this labelling automatically in 3D [18].

The ANIMAL algorithm deforms one MRI volume to match another, previ-
ously labelled, target MRI volume. It builds up a 3D non-linear deformation field
in a piecewise linear fashion, recursively fitting local spherical neighbourhoods.
Each local neighbourhood from one volume is translated to achieve an optimal
match within the other volume. The local neighbourhoods are arranged on a
3-D grid to fill the volume and each grid node moves within a range defined by
the grid spacing. The algorithm is applied iteratively in a multi-scale hierarchy.
At each step image volumes are convolved with a 3D Gaussian blurring kernel
where blurring and neighbourhood size (sphere diameter) are reduced after each
stage. Local neighbourhood fit is measured by correlation of the blurred image
intensities. Initial fits are obtained rapidly since at lower scales, only gross dis-
tortions are considered, but later iterations at finer scales accommodate local
differences at the price of increasing computational cost. Anatomical segmenta-
tion is achieved by transforming labels from the second (target) volume onto the
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first volume, via the inverse of spatial mapping of the 3D deformation field (see
Fig. 5-c for an example of an ANIMAL segmentation).

This method has the important advantage that it is atlas independent, since
the labels do not take part in the fitting process. In fact, multiple atlases defined
for different applications or by different anatomists can co-exist on the target
volume, and each one can be mapped through the non-linear transformation
without recomputation of the latter.

2.5 ANIMAL+INSECT

In the standard application of ANIMAL, the target is an MRI volume from a
single subject where all of the voxels within the volume have been anatomi-
cally labelled by a neuroanatomist to form an atlas [29]. In the ANIMAL+INSECT
paradigm described here, the target is an voxel-by-voxel intensity average of 305
MRI volumes, where each volume was automatically registered and resampled in
stereotaxic space [30]. The atlas used for segmentation was created by averaging
anatomical labels from 152 subjects young normal subjects, collected as part of
the ICBM project [31].

Probabilistic atlas There are a number of problems associated with an anatom-
ical atlas that is based on a single subject. For example, even though the subject
may be normal, certain brain regions may represent an extreme of the normal
distribution. Also, the use of a single brain atlas does not contain any notions of
anatomical variability, so it is impossible to evaluate the normality of shape, size
or position of specific structures from other subjects by comparing them with
the atlas. Finally, only one cortical topology (sulcal /gyral pattern) is represented
even though large variability is known to exist [32]. Since all registration-based
segmentations strategies (ANIMAL included) are based on the assumption that
there exists a 1-to-1 homology for all structures between source and target brains,
these strategies are undefined and may fail when this correspondence does not
exist, especially at the cortex.

Many of the problems listed above are addressed by using a probabilistic
atlas, or SPAM, created from the labellings of a large ensemble of normal sub-
jects [23]. The SPAM atlas used here models the anatomical variability of shape,
size and topology of 91 gross anatomical structures, where each structure is
represented by a SPAM volume in stereotaxic space (see section 2.1). The AN-
IMAL+INSECT segmentation paradigm requires that the atlas labels be trans-
formed from the target space and resampled onto the subject’s MRI volume.
Resampling a large number of SPAM volumes is inefficient, since only the label
of the most likely structure at each voxel position need be transferred to the
subject’s volume for masking. Therefore, a max-probability atlas (MPA) was
created in the target space, where only the label of the most probable structure
is stored at each voxel. This volume is created once by traversing the stereotaxic
volume, voxel-by-voxel, and storing only the label of the SPAM with the highest
probability at that voxel.
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In practice, labelled data from large number of subjects is needed to create
the atlas. Ideally, manual segmentations of all atlas structures on all subjects
should be used. Unfortunately manual identification is very time consuming (e.g.,
1 man-month required to segment the thalamus on 200 subjects [33]), making
the ideal situation unrealistic. Here, as proof of principal, the standard ANIMAL
[18] procedure was used with a gross anatomical atlas containing 91 structures
[29] to segment 150 data sets of young normal adults [34]. Validations of the
ANIMAL procedure have demonstrated that on average, automatic segmentations
are comparable to manual labellings for basal ganglia [18] and cortical gyri? [35],
making this solution only slightly less than ideal. These 150 segmentations were
used to create 91 SPAM volumes that were in turn used to produce the MPA
shown in Fig 3. In addition, three other MPA models were created from 1) the
set of 71 grey matter SPAMs to create a gMPA, 2) the set of 16 white matter
SPAMs to create a wMPA and 3) the set of 4 CSF SPAMs to create a vMPA (v
for ventricular).

Merge method Application of ANIMAL, using the MNI305 intensity average
target and the corresponding MPA results in a customized mazimum probabilistic
atlas (c-MPA) for the given subject (see Fig. 4). This paradigm is similar to the
typical use of the Talairach atlas in brain mapping for structure interpretation
and localization. The major advantage is that the customized atlas indicates the
most likely structure label for each voxel for a particular subject given anatomical
variability of a normal population, instead of only a structure label of the single
target brain. The ANIMAL+INSECT methodology makes a further improvement
by incorporating tissue class information derived from the subject in question in
the following manner.

After the three c-MPA models corresponding to GM, WM and CSF are
warped and resampled, they are used as masks to assign labels to regions of the
corresponding tissue types classified by INSECT. The c-gMPA is applied to the
GM tissue class to identify the gyri of the different cerebral lobes, basal ganglia
structures and the thalamus. The c-wMPA is applied to the WM tissue class to
label the corpus collosum, the anterior and posterior limbs of the internal capsule
and the WM voxels belonging to the lobes. In the same fashion, the c-vMPA is
applied to the CSF tissue class to segment the lateral, third and forth ventricles.
Note that while the c-MPAs actually overlap and thus may yield several different
labels for a given voxel, only the ¢c-MPA label corresponding to the voxel’s tissue
is applied. In the same manner, partial volume effects may be accounted for if
the classification procedure outputs continuous (instead of discrete) data. For
example, sulcal CSF can be labelled as such with the c-vMPA, even though the
classifier outputs CSF voxels with a magnitude less than 1.0.

Some cortical SPAMs extend past the inner table of the skull and may extend
into the scalp with a very low (but non-null) probability, since there are no other

% It is interesting to note that while individual cortical structure labellings may be in
error, SPAMs generated by averaging either manual or automatic labellings are very
similar.
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cerebral structure SPAMs that will compete for the maximum probability label.
When the original MPA is created, these extra voxel labels remain and will
erroneously apply a cortical label to voxels located in the skull or scalp that
were classified as GM or WM. In order to remove these incorrect labels, the
cortical surface extracted by MSD is used to create a brain mask that is applied
against the label volume.

Some structures cannot be segmented using only the method described above.
For example, in the T1-weighted volumes from the ICBM data base, the medial
half of the thalamus is usually classified as GM, while the lateral half is classified
as WM and cannot be distinguished from the adjacent white matter of the
posterior limb of the internal capsule. In this case, it is impossible to apply a
regional mask to a single tissue class to extract and label the structure. Therefore,
some structure-specific segmentation rules are required. For the thalamus, the
medial border is easily defined by masking the GM tissue class with the c-gMPA.
The definition of the lateral border is completely model-based using the standard
ANIMAL(-only) segmentation technique and is equal to the lateral border of the
thalamus in the cMPA.. Similar rules are used for the head of the caudate nucleus,
putamen and globus pallidus. Once these structures are segmented, their labels
are overlaid on top of the previous segmentation result, overwriting any labels
already specified by the initial cMPA masking process.

3 Experiments and Results

3.1 MRI acquisition

The data used for the experiments described below were acquired as part of the
International Consortium for Brain Mapping (ICBM) project, a Human Brain
Mapping funded research project with the goal of building a probabilistic atlas of
human neuro-anatomy [31]. T1-weighted MRI volumes from 152 young normal
volunteers (86 male, 66 female, age 24.6 +4.8) were acquired using a 3-D spoiled
gradient-echo acquisition with sagittal volume excitation (TR=18, TE=10, flip
angle=30°, 140-180 sagittal slices). As described below in section 3, frontal lobe
gyri were manually identified on twenty of these volumes.

3.2 Comparison of segmentations

Figure 5 shows a comparison of an ANIMAL-only segmentation, an ANIMAL+INSECT
segmentation and a manual segmentation. Not only is the ANIMAL+INSECT seg-
mentation improved at the cortex, where some grey-matter regions were missed
with the standard ANIMAL technique, the segmentation of the lateral ventricles is
much better as well. Where the ANIMAL technique overestimated the size of the
ventricle, the ANIMAL+INSECT is in complete agreement with the MRI anatomy
and with the expert’s labelling. Note that there remain some discrepancies be-
tween the ANIMAL+INSECT and the manual segmentations - especially at the
boundaries between gyri.
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In order to determine how well the segmentation procedure works in general,
we used manually segmented labels of gyri of the frontal lobes and compared
these to automatic labellings.

3.3 Manual labelling

In each hemisphere, the gray matter of five pre-frontal regions (superior, medial
and inferior frontal gyrus, the anterior cingulate gyrus and the orbito-frontal
gyri) were labelled by hand. The voxels for each structure were manually iden-
tified by voxel painting using Display, a computer program developed in our
lab [36] that shows four 2D orthogonal slices (transverse, coronal, sagittal and
user-defined oblique) through the volume with arbitrary pan, zoom and intensity
mapping on each slice. Display also includes a 3D graphics window that is capa-
ble of displaying 3D geometric objects such as the cortical surface. The cursor
can be placed in any of the 2D or 3D windows, and its position is simultaneously
updated in the other views. Voxel labels are painted on any of three orthogo-
nal views with simultaneous update in the other two. Cortical landmarks such
as the precentral, superior and inferior frontal, cingulate, fronto-orbital, fronto-
marginal and superior rostral sulci are identified in the 3D window and are used
to guide the manual segmentation. Manual segmentation of the ten gyri listed
above required approximately 10-15 hours per subject.

3.4 Automatic labelling

Qualitatively, the images in Fig 2 demonstrate that the automatic labellings of
the left superior frontal gyrus are very similar to the manual segmentations. In
fact, the grey-white border and grey-CSF borders are very similar. In some cases
however, the ANIMAL+INSECT method includes the opposite sulcal bank in the
gyral labels.

In order to compare the two methods quantitatively, we have used a similarity
measure first proposed by Dice [37]. As shown by Zijdenbos [38], this measure is
a variant of the standard chance-corrected Kappa (k) coefficient first developed
by Cohen [39]. This measure is the same as k when the background is infinitely
large.

When averaged over the 20 segmentations, the mean and standard deviation
of the x variant is 0.657 £ 0.037. In order to interpret this value and put it into
context, the right-most image on the third row of Fig 2 has a value of 0.728 (best
k value in this experiment), while the third image in the top row has a value of
0.573 (worst & value). Finally, the labelling of the superior frontal gyrus from
a single subject was deliberately dilated by one voxel, and the x variant was
evaluated between on the original and dilated labelling, yielding 0.725. Dilating
by 2 voxels yields 0.593.
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4 Discussion

We have presented an improved method for automatic segmentation of brain
structures by merging the complementary information from ANIMAL’s non-linear
deformation regional identification with the output of INSECT’s classification
technique. The procedure presented here is completely automatic and therefore
fully objective and applicable to large ensembles of brain volumes. While the
new procedure uses two algorithms that were developed at the Montreal Neu-
rological Institute, the new improved segmentation method is not dependent on
these particular methods. In fact, any classification method that differentiates
tissue types and any non-linear registration method may be merged to max-
imize the complementary information of both techniques. Since INSECT yields
high resolution structure information, it is no longer necessary to run ANIMAL
to fine resolutions, thus providing a considerable improvement in speed. In fact,
running times are reduced from approximately 10 hours for estimation of the
high resolution non-linear fit to less than 2 hours, including both classification
and low-resolution warping.

The qualitative results shown in Fig 2 demonstrate that the ANIMAL+INSECT
methodology can segment individual gyri from MRI data. While the quantitative
measures presented here are not as high as we would like, we are currently
working on estimating intra- and inter-observer variability estimates to put these
values into context.

At least three methodological problems remain for future work: 1) In their
current form, the cortical SPAMs do not explicitly represent multiple topolog-
ical patterns that exist for cortical gyri. We plan to use an atlas that contains
multiple SPAM representations for specific cortical regions, where each SPAM
corresponds to a given cortical pattern for that region. 2) Structures that have a
high anatomical variability are represented by SPAMs whose size is smaller than
their true average size. These structures must be segmented using a model-only
method, similar to those described above for the segmentation of the thalamus,
caudate, putamen and globus pallidus. 3) Surface data, extracted by MSD, will be
used to refine over-defined cortical regions (e.g., where the opposite sulcal bank
is included in the segmentation of a gyrus). By using the surface information, it
will be possible to separate small disconnected regions on the cortical surface,
and then correct the gyral labelling in 3D.
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Fig. 2. Segmentation of the Superior Frontal Gyrus
These images compare the manual (left) and automatic (right) segmentations
of the left superior frontal gyrus on coronal slices from 20 subjects.
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Fig. 3. Max-probability atlas
These images show slices through the maximum probability atlas (left) and the corre-
sponding slices through the ICBM150 T1-weighted average brain (right).

ANIMAL
inverse
nonlinear
robabilistic atlas Anatomical
masking
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—

classification

stereotaxic MRI classified tissues

Fig. 4. Schematic of ANIMAL+INSECT merge.
The non-linear transformation required to customized the stereotaxic MPA for the
subject is estimated by ANIMAL. The subject’s MRI is classified in to WM, GM and
CSF classes by INSECT. The classified data are masked by the regions in the c-MPA to
segment regions on the subjects MRI volume.

Fig. 5. ANIMAL-only vs ANIMAL+INSECT
(Left to right) Coronal slice through original MRI volume; typical zoomed result (up-
per left quadrant) result of INSECT classification; of ANIMAL-only segmentation; of
ANIMAL+INSECT segmentation; or manual segmentation. Note how the ANIMAL+INSECT
result improves segmentation at the cortex and the ventricles and agrees with the ex-
pert labelling.



