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Abstract

We propose a method for estimating intrasurgical brain shift for image-guided

surgery. This method consists of �ve stages: the identi�cation of relevant anatomi-

cal surfaces within the MRI volume, range-sensing of the skin and cortex in the OR,

computation of the range-MRI rigid transformation based on a calibration procedure

and sensor-base tracking, non-rigid motion tracking over time of cortical range images,

and lastly, interpolation of this surface displacement information over the whole brain

volume via a realistically valued �nite element model of the head. This research e�ort

emphasizes the �rst four stages.

The �rst stage is a surface model which imbeds the 3D surface identi�cation prob-

lem within the evaluation of a volumetric function, whose �nal zero-level isosurface

coincides with the anatomical surface of interest. Contributions made by us include a

novel approach to incorporate higher-level anatomical information in the model, as well

as a post-processing stage consisting of a Euclidean Distance and Closest Point Map,

which is later exploited to speed up the non-rigid surface registration. Quantitative

validation of the cortical surface identi�cation makes use of a digital anthropomor-

phic head phantom and a MRI simulator whose underlying model is derived from �rst

principles. Further validation is provided with real healthy subject and patient scans.
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The range-sensor is a commercial product which uses both laser-based triangulation

and defocusing techniques to produce a 2D range pro�le, and is linearly swept across

the skin or cortical surface by a commercial linear positioner to produce a 3D range

image. The calibration and sensor-base tracking procedure suggests a means of relating

the patient-MRI transformation, already computed in an IGNS setting, to a range-MRI

transformation, through the use of the patient-space pointing device.

The surface registration technique is of the Iterative Closest Point type, where each

iteration bene�ts from looking up, rather than searching for, explicit closest point pairs.

These closest point pairs in turn are used to determine the non-rigid registration of

the MRI-based cortical surface with its deformed range-based homolog. Quantitative

validation is ongoing, and makes use of the digital head phantom, where the outer

cortical surfaces subpatches taken from it can be explicitly identi�ed and warped based

on an analytical displacement function. Our validation also makes use of a novel

deformable brain-shaped phantom, made of Polyvinyl Alcohol Cryogel.
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1 Introduction

Image-guided neurosurgery (IGNS) is a technique whereby a model of a patient's head,
typically featuring skin, cortex and lesion surfaces, is constructed from a set of segmented
MRI images and is then registered with the patient's head in the OR, using a locating device
or probe, whose position is tracked over time. The usefulness of this technology hinges on
the accuracy of the transformation between the image and patient spaces. However, this
transformation becomes less accurate as the brain shifts during surgery. Intrasurgical brain
shift has been documented by Maurer [38] and by Skrinjar [50], who attribute it to the e�ect
of gravity, to a gradual seepage of CSF, to cerebral blood volume manipulation, and to the
e�ect of certain drugs. The amount of shift can extend to as much as 15mm, according to
Maurer [38].

To alleviate this problem, we propose a method for estimating brain shift which is char-
acterized by the following stages (see �gure 1):

� semi-automatic identi�cation (segmentation) of relevant anatomical surfaces within the
MRI volume;

� range-sensing of the skin and cortex in the OR;

� computation of the range-MRI transformation, based on a calibration procedure and
sensor base tracking;

� non-rigid motion tracking, over time, of the range image of the brain;

� and lastly, interpolation of the resulting surface displacement over the whole brain
volume, assuming null displacement at the base of the skull, via a realistic �nite element
model (FEM).

Our research is an investigation of the �rst four stages, and aims to provide proof of concept
of the �fth stage on the basis of a deformable phantom whose nonrigid motion mirrors that
of the brain under surgery. We thus also propose a new phantom design, whose material
properties and shape are good approximations of those of the human brain.

In contrast with existing FEM-based techniques [40, 50], we emphasize the estimation of
a dense cortical surface displacement function, which will then be interpolated over the brain
volume (assuming null displacement at the base of the head), whereas these techniques focus
on the physical modelling which most realistically performs this interpolation, either assum-
ing sparse displacement data (obtained via a intrasurgical pointing device) or altogether
not providing any speci�cs about constraining the model with known displacements. More-
over, these head models are either generic or achieve patient speci�city through a laborious
manual segmentation stage, whereas our semi-automatic surface identi�cation stage can be
explicitly integrated with meshing software to make the �nite element model patient-speci�c
with little user interation. This work can be seen as complimentary to ours, in constituting
a patient-speci�c brain-shift estimation framework. Once the �nite-element meshing is im-
plemented in light of identi�ed anatomical surfaces, such as skin, cortex, ventricle and lesion
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Figure 1: Brain shift estimation framework

boundaries, the use of published material properties of the brain and perhaps of patholog-
ical tissue, in conjunction with commercial displacement FEM software, will complete the
framework proposed here.

This document is organized as follows. After the introduction, we discuss our work on
each stage including results, namely: the semi-automatic identi�cation of the brain surface
(x 2), the range-sensing of the exposed brain surface in the OR (x 3), the calibration and
sensor base tracking procedure for estimating the MRI-range transformation (x 4), brain
motion estimation (x 5). The latter section also discusses our elastic brain phantom, in the
context of validation. x 6 elaborates on the motivation and future work in the �nite element
modelling stage.

2 Model-Based Semi-Automatic Identi�cation of the

Outer Brain Surface in MRI

2.1 Introduction: Motivation for Surface Model

We begin by providing some motivation for using a semi-automatic model-based approach for
anatomical surface identi�cation (also known as segmentation). To this end, we contrast this
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kind of approach with the more traditional and still prevalent manual technique. Further-
more, we make a distinction between a multi-slice (2D) and fully 3D technique, and justify
employing the latter approach. We also distinguish between two kinds of surface models,
namely physically-based and surface evolution models, and provide intuitive justi�cation for
employing the latter kind. Finally, the details of our model, emphasizing our contribution
at the implementation and validation levels, are deferred until the following sections.

Currently, the traditional technique for identifying anatomical surfaces in IGNS involves
identifying a point in a slice or volume corresponding to the tissue type of interest, and
based on this \seed", labelling software identi�es the rest of the contiguous voxels which are
similar intensity (based on user-de�ned intensity thresholds). Occasionally, a low contrast
area at the tissue boundary will cause the labelling to bleed onto tissues of the wrong type,
which requires special manual intervention in this area to alleviate the bleeding e�ect, and
typically entails a labour-intensive slice-by-slice, rather than 3D, approach [24, 33]. Current
tomographic volumes involve up to 256 of these slices, and each one may require this kind
of interaction. Finally, the contiguous labelled voxels within these slices together comprise a
volume of interest, coinciding with brain tissue for example, the outside of which (identi�ed
by the Marching Cubes algorithm [32]) constitutes the boundary of interest.

In contrast, we adopt a semi-automatic anatomical surface identi�cation (segmentation)
stage to replace this procedure. There are four main reasons for this approach.

� First, an immediate consequence of an automatic or semi-automatic technique is the
reproducibility of the results, in contrast with the inter- and intra-subject variability
documented for even expert anatomists[65].

� Moreover, another immediate consequence is the reduced user intervention (for a well-
designed algorithm and interface).

� Third, a semi-automatic or automatic technique can incorporate prior knowledge into
the model in order to avoid common pitfalls, such as low-contrast areas which tend
to recur across scan subjects. However, because of the variability of brain anatomy
across subjects and of the comparative cost of failure of an algorithm when measured
against a small amount of user involvement, we consider a semi-automatic segmentation
technique more attractive than a fully automatic one.

� Finally, a semi-automatic technique can easily process tomographic information in
a fully three-dimensional manner, which o�ers advantages over a series of 2D slice
operations. The justi�cation for an inherently 3D algorithm is that either type of
model, physical or surface evolution, features a term which favours a smooth contour
(in 2D) or surface (in 3D), and a 3D framework produces a boundary which is smooth
not only along an intra-slice contour, but across neighbouring slices. This characteristic
is critical to an eventual shape-based registration with a range image of the same
anatomical surface, whose sampling orientation has no relation with that of the MRI
volume.
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(a)

(b)

(c)

Figure 2: Imbedding function with 2D contour example, with inward-moving zero-level iso-
contour, based on synthetic image featuring 2 elliptical bodies: (a) zero-level isocontour
(white), overlaid on image at t = 0, at t = 15 sec., and at t = 60 sec.; (b) imbedding
function 	, with level set f	 = 0g coinciding with isocontour in (a), at t = 0, at t = 15
sec., and at t = 60 sec.; (c) narrow band implementation of contour evolution model, with
identical situation as in (b): the computation of 	 is restricted within a narrow band near
the evolving zero-level isocontour.

Our anatomical surface segmentation technique is an adaptation of a recently published
surface evolution model[13, 61], which imbeds the identi�cation of an implicit 3D surface S
into the estimation of an evolving volumetric function 	(x; y; z; t), whose isosurface f	 = 0g
within the tomographic volume coincides with S throughout. This concept of imbedding is
illustrated in �gure 2 for the analogous problem of lesser dimensionality, namely identifying
a contour C coinciding with an anatomical boundary in a 2D image.
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Figure 3: Identi�cation of elliptical boundaries as in �gure 2, with a physically-based model
without topological adaptation, courtesy of Johan Montagnat: initial con�guration, 100th
iteration, �nal iteration.

An initial contour C(t0) is �rst de�ned by the user outside the boundary of interest,
and the imbedding function 	(x; y; t) is initialized as the signed distance map from C(t0).
The initial contour coincides with the isocontour f	(x; y; t0) = 0g. Interior points in the
image domain are typically labelled negative, and the exterior points are labelled positive.
The imbedding function 	(x; y; t) evolves in such a way that its f	 = 0g isocontour, or
zero-level set, moves inwards until it coincides with the anatomical boundary of interest, at
which point the zero-level set binds to the boundary, and the resulting contour is precisely
this �nal zero-level set f	(x; y; tf) = 0g. To reduce the computational load of imbedding a
problem over the whole image domain, we adopt the Narrow Band approach proposed by
Adalsteinsson[1], whereby the computation of 	(x; t) is restricted to a band, a few pixels
wide, in the neighbourhood of its evolving zero-level isocontour. This concept is illustrated
in �gure 2 (c) for the 2D contour identi�cation pursued in this discussion.

A contour/surface evolution model possesses certain advantages over physically-based
contour/surface models [55, 44], such as its capacity to capture a large variety of topologies
from a given initialization and a relative insensitivity to initial conditions [35]. In contrast,
physically-based models cannot easily cope with di�erences in topology with respect to
their underlying model1. A comparison of the examples in �gures 2 and 3 illustrates this
distinction. Moreover, the tensile properties of physical models may make them ill-suited for
capturing highly involuted surfaces (such as that of the inner or outer cortex), as illustrated
for the 2D invaginated circle in �gure 4. From the outset, the justi�cation for choosing a
surface evolution model lay in its 
exibility in capturing complex shapes, such as the cortex
and arbitrarily di�use pathologies, with minimum user intervention at the initialization stage.

Alternately, the 2D model could just as easily have been initialized with one or more

1To be fair, signicant progress has been made recently in making physical models more topologically
adaptable[39, 21], although this comes at the cost of explicit collision detection, which can be expensive, and
the extension from the identi�cation of 2D contours to that of 3D surfaces is not as simple as the evolution
framework adopted by us.
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(a)

(b)

Figure 4: Demonstration of di�erence in tensile properties of evolution and physical models,
on 2D invaginated circle: (a) contour evolution model at initialization (t=0), at 10 sec., and
at 30 sec; (b) physical model at initialization, at 8th iteration, and at 30th iteration, courtesy
of Johan Montagnat.

contours completely inside the boundary of interest, and have employed an outward moving
isocontour as shown in �gure 5. Finally, the method described here fully generalizes to
identifying a 3D surface within a volume, requiring a inner or outer user-de�ned closed
surface from which a signed distance map is computed with the volume as its domain, which
serves as an initialization for the imbedding function 	(x; y; z; t), as shown in �gure 6.

The surface model proceeds from the signed distance map computed from the user-de�ned
surface, and evolves according to the following expression [14, 61]:

@	

@t
= F (x; y; z)kr	k

�
div

�
r	

kr	k

�
+ �

�
+ rF � r	 , (1)

This model features a di�usive term kr	kdiv(r	=kr	k) which tends to smooth out each
isosurface, including the zero-level surface, a hyperbolic term kr	k� which pushes the each
isosurface forward in a discontinuity-preserving manner, and two image terms: a speed func-
tion F which slows down the zero-level surface near anatomical boundaries, and a so-called
\doublet" termrF �r	 which prevents the zero-level surface from overshooting these bound-
aries. The sign of the � constant in the hyperbolic term determines whether each isosurface
is inward or outward moving.
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Figure 5: Contour identi�cation with outward-moving isocontour: zero-level isocontour
(white), overlaid on invaginated circle image as in �gure 4; at t = 0, at t = 10 sec. and at t
= 60 sec..

t=0 sec. t=15 sec. t=30 sec. t=0 sec. t=5 sec. t=30 sec.
(a) (b)

Figure 6: 3D surface identication with synthetic volume featuring (a) a pair of ellipsoids
and (b) an invaginated sphere: multiplanar and rendered views of 	(x; y; z) = 0 at initial,
intermediate and �nal instants.
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(a)

(b)

(c)
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(d)

Figure 7: 2D illustration of each term at work: (a) di�usive: at 0 sec., at 10 sec., and at
120 sec.; (b) hyperbolic: at 0 sec., at 10 sec., and at 30 sec.; (c) speed and doublet: consider
the model behaviour in the absence of these two terms (compare with �g. 2): at 0 sec., at
15 sec., and at 30 sec.. (d) Illustration in 2D of doublet term: raw 2D signal I(x; y) with
contour C approaching boundary, speed function F (x; y) derived from �ltered signal, and

doublet term
�
rF � ~N

�
~N .

An intuitive illustration of each term in expression (1) appears in �gure 7, featuring
once again an analogy of lesser dimension, an evolving 2D contour. These illustrations fully
extend to each term of the 3D surface evolution model. In �gure 7, the di�usive term
smooths the corners of the rectangular zero-level contour, nudging it towards an elliptical
shape (and ultimately towards a circle, i.e.: tending towards constant curvature �). The
hyperbolic term shrinks the rectangle while retaining its discontinuities. These e�ects can
be seen as being applied to each isocontour in 	(x; y; t), including the zero-level contour.
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The speed term slows the zero-level contour down at the tissue boundary in the image, and
the doublet term constitutes a local trough, centered at this boundary, which prevents the
zero-level contour from overshooting it: in their absence, the zero-level contour never halts
at the underlying boundary.

The doublet term is further considered in �gure 7 (d), and is best explained in 3D
surface or 2D contour evolution representation. The level set representation of expression
(1) corresponds to the evolution of a surface S, along the inward normal direction:

@S

@t
=
�
FH �rF � ~N

�
~N , (2)

where H is the mean curvature of S, and ~N is its inward normal. If we consider the 2D
analogical situation in �gure 7 (d), we have an inward moving zero-level contour C whose

evolution is given by @C=@t =
�
F��rF � ~N

�
~N , where this time � is the curvature and ~N

the inward normal of C. In both the surface and contour expressions, the term �rF � ~N
corresponds to the doublet term in level set representation. As shown here, the speed term
F has a local trough at the boundary of interest, and the vector �rF points toward the
minimum of this trough. For an inward moving contour, the dot product �rF � ~N outside
the boundary is positive, and the doublet term is in the direction of the inward normal
and pushes the zero-level contour towards the minimum. Inside the boundary, if the inward
moving contour overshoots it, �rF � ~N becomes negative, and the doublet term points
outwards and draws the contour back towards the minimum. This feature may be needed
for a continuously-valued image-based speed function, such as one inversely proportional to
a �nite gradient magnitude, if this function in practice is never zero-valued.

2.2 Implementation Details of our Surface Model

To recapitulate the overview presented in the previous section, our anatomical surface iden-
ti�cation technique is a model-based technique, known as a surface evolution model, which
is characterized by imbedding the identi�cation of a 3D surface S into the evaluation of a
function 	 whose domain spans the tomographic volume:

�
X 2 <3 such that S(t) � X : 	(X; t) = 0

	
. (3)

@	

@t
= F (x; y; z)kr	k

�
div

�
r	

kr	k

�
+ �

�
+ rF � r	 , (4)

where div(r	=kr	k) represents the mean curvature H of an isosurface of the function 	.
This model features a di�usive smoothing term kr	kdiv (r	=kr	k), a hyperbolic motion
term kr	k�, and two image terms: a speed function F and a doublet term rF � r	 which
serve to bind the evolving surface to the anatomical boundary of interest. Moreover, the
model is initialized by one or more user-de�ned 3D surfaces which fully contain or are fully
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contained by the anatomical boundary, and the model evolves in a manner which nudges the
zero-level isosurface inwards or outwards until the image terms bind it to the boundary. The
imbedding function 	 is initialized as a signed distance map from the user-de�ned surface(s).

In most existing implementations of surface evolution models, the speed term is strictly
a function of the image gradient, i.e.:

F =
1

1 + kr~I(x; y; z)kn
, (5)

where typically n=1, 2 or 3 and ~I(x; y; z) usually is a Gaussian-�ltered image (MR) volume.
However, as we will see in the next section, this approach has some limitations when it comes
to identifying the brain surface, such as a lack of T1 contrast between grey matter and the
sagittal sinus and between grey matter and muscle tissue, particularly near the eyes, possibly
entailing a bleeding e�ect outside the brain surface. To alleviate this problem, we propose
to endow our model with higher-level anatomic information, namely by �rst running a voxel
classi�cation algorithm on the tomographic volume(s), and to compute a speed function
which restricts the surface model to expand only within white and grey matter, according
to the following discrete relation:

F (x; y; z) = 1:0 if f(x; y; z) 2 WMg or f(x; y; z) 2 GM and nearWMg ,

= 0:0 otherwise. (6)

In practice, our implementation features the following stages, as illustrated in �gure 8
and 9:

� Preprocessing of the MR volume(s) for the subsequent computation of the image-based
speed term. Given that we want to eventually register the identi�ed cortical surface, we
prefer to preprocess the MR volume with an anisotropic di�usion operator rather than
an isotropic �lter, to limit unwanted blurring across relevant anatomical surfaces. The
preprocessing we use is Kimia & Siddiqi's curvature 
ow[25], which is implemented
within the level-set framework, as described in x2.5.1.

� A image-based speed term computation stage designed to allow the expansion of the
model through white matter, to capture its boundary: F (x; y; z) = 1:0 if f(x; y; z) 2
WMg and F (x; y; z) = 0:0 otherwise.

� The identi�cation of the WM boundary, which starts as a set of user-de�ned small
spheres imbedded in white matter as the initial zero-level isosurface at t = 0, and
computes the surface evolution model over (simulated) time by alternating between
the following two methods:

{ The initialization of 	(tl+1) as a signed distance map from the f	(tl) = 0g isosur-
face at the previous iteration, which is computed with the Fast Marching method.
This method is brie
y described and validated in x2.5.3.
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{ The numerical implementation of expression (4) as a �nite di�erence equation at
the voxel i = (i; j; k) and at time tl+1 � (l + 1)�t, namely:

	(i; (l + 1)�t) = 	(i; l�t)+

�t
�
F (�i) k(	x(i);	y(i);	z(i))k [H(	(i)) + �] +�
Fx(�i); Fy(�i); Fz(�i)

�
� (	x(i);	y(i);	z(i))

	
. (7)

The numerical implementation of the second method follows standard classical
level sets procedure. The label �i denotes the voxel on the f	(tl) = 0g isosurface
which is closest to the voxel of interest i. Since the image information only
coincides with the zero-level, it must be \extended" from zero-level isosurface
voxels to other voxels where expression (7) is evaluated.

Note that the narrow band restriction applies to both methods, whereby each is com-
puted only within a thin volumetric shell close to the evolving f	(t) = 0g isosurface.

� A recomputation of the image-based speed term, according to expression (6), to allow
expansion of the surface model through grey matter \close" to the WM boundary, to
capture the outer brain surface.

� The expansion of the f	(t) = 0g isosurface to coincide with the outer cerebral and cere-
bellar surface, again based on alternating between signed distance map computation
and the numerical evaluation of the surface evolution model.

� Post-processing of the outer brain surface to produce a Distance/Closest Point Map,
for the subsequent non-rigid registration with the intra-operative range-based surface.
This is simply the Fast Marching method alluded to in stage 1 of the surface model,
applied not to computing a distance map from the evolving zero-level isosurface within
a narrow band, but from the �nal surface everywhere in the volume. As will be seen,
the identity of the �nal surface point closest to each voxel is relevant to the subsequent
range-MRI surface registration in the OR.

2.3 Integrating Anatomical Information into the Model

Surface evolution models have recently been demonstrated on tomographic scans of the
brain[36, 62]. These techniques are founded on an outward moving zero-level isosurface
initialized completely within the brain (typically a few small spheres imbedded in white
matter). An inward-moving surface initialized at the skin surface is conceivable, but not
likely to produce good results at the base of the brain, which features muscle and bone
tissue boundaries distal to the brain which can easily trap the evolving surface model away
from the brain. Hence the predominance of outward-moving approaches initialized from
within.

13



Preprocessing

Anisotropic
Diffusion

Voxel
Classification

Raw T1 (T2) (PD)-weighted
MRI Data

Filtered MRI
Data

Tissue Class
Data

White Matter
Data

Grey Matter
Data

WM-based
Speed function

WM/GM-based
Speed Function

Training
(``Tag``) Points

WM Boundary
Computation

Fast Marching
Method

Surface Model Finite
Difference Eqn.

Distance Map
of 0-level

Isosurface at tl

Embedding
FunctionΨ(tl+1)

Ψ(tl+1)=0

Isosurface

Outer Brain Surface
Computation

Fast Marching
Method

Surface Model Finite
Difference Eqn.

Distance Map of
0-level

Isosurface at tm

Embedding
FunctionΨ(tm+1)

Ψ(tm+1)=0

Isosurface

WM-embedded
spheres

Ψ(t0)=0

Isosurface

WM
Boundary

WM/GM Distance
Function

Outer
Brain Surface

Ψ(t0)=0

Isosurface

Figure 8: Algorithmic description of our surface evolution model framework.
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The problem faced by this approach however is how to prevent the evolving surface
from getting snagged in the white-grey matter boundary, also characterized by a strong
gradient, albeit a weaker one than the outer cortical surface (grey matter-CSF boundary),
as illustrated �gure 10(a). A simple approach would be to threshold gradients and only slow
down the evolving surface at very strong gradients, i.e.: outer cortex and lesion boundaries.
But automatically �nding such a threshold is elusive, as is guaranteeing that there won't
be gaps in the halting force on the outer cortex, where the local intensity gradient falls
below this threshold. A bleeding e�ect which ensues, through such gaps, is illustrated in
�gure 10(b).

Zeng[62] and MacDonald[34] each propose a solution featuring two evolving surfaces
which are bound to each other by a distance constraint and which expand to segment the
inner and outer surfaces of a healthy cortex. This elegant idea confers on their respective
models higher-level anatomical information which stabilizes their convergence to inner and
outer cortical surfaces. However, the assumption of the white matter boundary always being
contained by the grey matter boundary may break down in the presence of pathologies.
Moreover, the tight distance threshold which is appropriate for the outer cortex, useful to
prevent the surface model from bleeding into the eyeballs or sagittal sinus, is inappropriate for
the cerebellum and for the area near the ventricles, which are characterized by comparatively
large expanses of grey matter.

For these reasons, we adopt a di�erent approach to providing our surface model with
higher-level anatomical knowledge, namely we integrate the results of a voxel classi�cation
algorithm[16, 28] into the image-based speed term. Brie
y, a classi�er maps an image voxel,
represented for D modalities as a D-dimensional feature vector in <D, x = (x1; x2; � � � ; xD),
onto a tissue class Cj, where j = 1; :::; c, and c is the total number of tissue classes in the
scan. This concept is illustrated on �gure 11. We are interested in a technique whereby the
user can provide anatomical knowledge by simply clicking on a few (5-20) tag points for each
class. The classi�er training points for white matter can in turn also serve as the centers
of the outward moving spheres used in the subsequent level sets surface identi�cation. We
could also use spheres centered at grey matter points, but as will be seen, we operate in the
following stages: move outward from imbedded WM points to the WM boundary, determine
GM points \close" to this WM boundary, move to the outer boundary of these GM points.

Our motivation here is to select a classi�er which can exploit multiple modalities, which
does not degrade too badly if only one (typically T1) modality is available (which is often the
case in a clinical setting, although the scanned tissues may feature contrast agents), which is
able to deal with the presence of pathologies, and which can function with limited supervision.
We investigate a variation of Fuzzy C-Means (FCM) clustering, called the semi-supervised
FCM (ssFCM) algorithm, which requires only limited supervision and which in fact has
been used to classify voxels of brain scans featuring pathologies[7]. We also investigate the
Minimum Distance (MD) classi�er[28, 22], which can function with a relatively small training
set and constitutes the �rst iteration of the ssFCM classi�er. Consideration of the two allows
us to easily establish the bene�t of clustering after the initial partition of parameter space.

Our method has the following advantages:
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t=10 sec. t=20 sec. t=40 sec. t=100 sec.
(a)

t=10 sec. t=20 sec. t=40 sec. t=100 sec.
(b)

Figure 10: Tri-planar view of evolving cortical surface model with its image term solely based
on gradient magnitude. (a) With a low gradient threshold (allowing points of low gradient
magnitude to halt the zero-level surface), the surface may converge to the WM boundary
rather than the outer brain boundary. (b) With a higher threshold, the surface can bleed
through the outer brain boundary, and never actually converge to a solution.
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Figure 11: Illustration of voxel classi�cation, for T1-, T2- and PD-Weighted feature space,
based on the middle coronal slice of simulated data with 5% noise, preprocessed with
anisotropic di�usion (t = 0:5sec).

� Integrating tissue class information into the speed term allows us to constrain our
model in a manner comparable to Zeng and MacDonald: we can restrict the zero-level
isosurface to evolve only in voxels classi�ed as white matter or as grey matter and
deemed close to white matter, thereby preventing undesired bleeding e�ects. Moreover,
there is no reason for this distance tolerance, which enforces grey/white matter bound-
ary proximity, to be a constant over the whole volume. As illustrated in �gure 12,
this WM/GM Distance Function is set to some maximum value at the centroid,
and tends to a minimum parameter at the outer edges of the cortex. Moreover, the
minimum value at the edge of the cortex also varies spatially.

� Secondly, our technique, which is rooted in a speed function rich in anatomical in-
formation, is highly 
exible. Pathologies are easily dealt with, provided they can be
discriminated from white and grey matter[9].

� Next, this approach to constituting a speed function also provides us with an eÆcient
way of taking into account multiple scan modalities, if available: the classi�er simply
maps the parameter space encompassing T1-, T2- and/or proton density-weighted
volumes to a tissue class volume spatially coinciding with these tomographic volumes.
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(a) (b) (c)

Figure 12: Illustration of WM/GM Distance Function: (a) Distance Function mapped to a
grey-level intensity; (b) speed function based on membership of voxels classi�ed as WM or
GM, using T1 alone without a contrast agent (note that there little discrimination from T1
alone between GM and muscle, skin or sagittal sinus voxels); (c) speed function based on
WM/GM voxels, as in (b), but excluding GM voxels which exceed the Distance Function
shown in (a).

� Moreover, this approach is easily adapted to other anatomical applications, at the cost
of a di�erent voxel classi�cation training, and alternate use of voxel class information,
possibly involving some sort of distance constraint between two classes, possibly not.

The ability to cope with con
icting requirements in white to grey matter boundary
proximity is handled by the nature of the WM/GM Distance Function:

� It is tightest at the outer cortex (above the centroid along the proximal-distal axis),
e.g.: near the sagittal sinus.

� It is somewhat looser at the base of the brain where the grey matter tends to be thicker
than in the cortex.

� It is more permissive still at the cerebellum, where the grey matter is thickest.

� It is loosest at the centroid of white matter, where bleeding of the surface model is
less a concern, and which coincides with grey matter in the area of basal ganglia,
neighbouring the ventricles[12].

One point worth emphasizing here is that the WM boundary, to which proximity of
GM voxels is established, is the one identi�ed by �rst running the surface model only on
exclusively on WM voxels. An alternative would be to simply compute a distance map
from all voxels putatively identi�ed as WM by the classi�er, but this leaves the surface
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Figure 13: An overview of the simulation process (adapted from [29], courtesy of G. Bruce
Pike).

model susceptible to isolated points misclassi�ed as WM, which would drastically reduce
the e�ectiveness of our coupling. Our way of proceeding ensures that only voxels classi�ed
as WM which are contiguous with user-selected points (known to be true WM points) are
retained to anchor the identi�cation of the outer cerebral and cerebellar surfaces.

2.4 Validation Tools: MRI Simulator and Realistic Digital Brain

Phantom

We propose to validate the various stages of our brain surface identi�cation technique with
a quantitative approach based on realistic synthetic data, where ground truth is known, and
qualitative tests with in vivo subject data. The latter data comes in the form of healthy
subject scans obtained from the ICBM2 database, as well as MNI patient scans featuring
pathologies. While patient data can be exploited quantitatively by comparing image pro-
cessing results against manual analyses performed by experts, the latter process is known
to be labour-intensive and su�ers from both intra- and inter-expert variabilities[30, 65]. In
contrast, our quantitative validation stage makes use of two complementary software tools
which were developed at the MNI and which eliminate these variabilities: a MRI simulator
speci�cally designed by Kwan et al. for the purpose of image analysis evaluation[30], and
a high-resolution, volumetric, anthropomorphic digital brain phantom elaborated by Collins
et al.[17].

The MRI simulator features Signal and Image Production modules, the former of which

2International Brain Mapping Consortium[57].
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is comprised of Spin Model and Pulse Sequence objects, while the latter is comprised of
Phantom, Scanner, Rf Coil and Image objects[30]. The architecture of the system, empha-
sizing the interaction between objects, appears in �gure 13, while an illustration of the 3D
brain phantom and typical T1-, T2- and PD-weighted images resulting from it appear in
�gure 14. The Signal model is dedicated to computing tissue intensities on the basis of the
magnetization properties, made explicit in the Spin Model, and of the signal resulting from
Pulse Sequence object. The Image Production module is controlled by the Scanner object
and generates tomographic images from computed tissue intensities, and featuring imaging
e�ects such as noise, RF inhomogeneity, and partial volume. The Phantom object synthe-
sizes the patient anatomy in the scanner as described above, the RF Coil object models
signal reception, and �nally the resulting tomographic scan is stored in the Image object.

The design of the digital brain phantom is motivated by the limitations of in vivo stud-
ies, namely the implausibility of establishing with certainty the exact boundaries of tissues
in a tomographic scan (without slicing and staining the underlying anatomy), and those
of previously existing phantoms, both physical and digital, whose geometrical simplicity
has limited their predictive ability and anatomical relevance[17]. This phantom is based
on single-subject average dataset (compiled from 27 scans) which was semi-automatically
classi�ed and subsequently manually corrected by a trained neuroanatomist. Each voxel is
labelled as one of 10 classes, namely3: Background, Grey Matter, White Matter, Cortico-
Spinal Fluid, Fat, Muscle, Skin, Skull, Glial Matter, and Other. The phantom comes in
two forms, respectively conveying discrete and fuzzy tissue membership. While the latter is
judged to represent partial volume e�ects most realistically, we have chosen to work with
the discrete version because of our requirement of precise boundaries in characterizing the
accuracy of the various stages of our anatomical surface identi�cation technique.

2.5 Validation of the Surface Model

2.5.1 Anisotropic Di�usion Validation

The validation of the anisotropic di�usion preprocessing comprises a comparison of the Kimia
level set-based technique[25] adopted by us,

 t = Hkr k where

H = [ xx( y +  z) +  yy( x +  z) +  zz( x +  y)

�2 x y xy � 2 x z xz � 2 y z yz] =
�
 2
x +  2

y +  2
z

�3=2
, (8)

with the classical Gaussian �ltering, as well as a series of tests to determine an optimal
scale factor under typical imaging conditions. In contrast with our surface evolution model

3However, the T1, T2 and PD values of the latter 4 classes mirror those of 4 of the �rst 6, which is
equivalent to a labelling according to 6 tissue classes. The realistic assignment of magnetization properties
of the latter 4 classes was not judged to be essential to the applicability of the phantom[18]. For this reason,
all illustrations of the phantom in this thesis feature 6 classes, distinguished on the basis of magnetization
properties.
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(a) (b) (c) (d)

Figure 14: (a)Illustration of 3D digital brain phantom, with discrete class membership
mapped to grey-level; (b) typical T1-weighted volume resulting from simulation, with dis-
crete phantom in (a) used as input; (c) T2-weighted volume with same phantom input; (d)
PD-weighted volume with same phantom input.

application, in this application the function  (x; y; z) is not initialized with a signed distance
map, but with the raw tomographic volume. The smoothed output is simply the value of
 at the simulated time duration, based on a �nite di�erences discretization of expression
(8). Our comparison exploits Koenderink's Di�usion Equation formulation for Gaussian
�ltering[27],

 t = r2 , (9)

which allows us to easily look at the two formulations at identical scales, characterized by
the time duration of each di�usion. The relationship between the spatial extent of the
convolution implementation and the time duration of the di�usion implementation of the
Gaussian kernel is given by[27]:

2�2 = 4t . (10)
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(a) t = 0

t = 0:125 t = 0:5 t = 2:0 t = 8:0
� = 0:5 � = 1:0 � = 2:0 � = 4:0

(b) Gaussian di�usion

t = 0:125 t = 0:5 t = 2:0 t = 8:0
(c) anisotropic di�usion

Figure 15: Illustration of e�ect of scale parameter, for (a) simulated T1 volume (with null
noise and inhomogeneity values) on (b) Gaussian and (c) anisotropic di�usion.
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Figure 16: 2D Illustration of measurements for validation and choice of scale of anisotropic
di�usion: (a) phantom class data, with 1D pro�le along normal direction, through known
boundary point; (b) �ltered simulated T1-weighted MR data, with 1D pro�le as in (a); (c)
magnitude of the gradient of �ltered T1-weighted data, with 1D pro�le as (a) and (b), with
measurements shown.

Figure 15 provides a qualitative illustration of the di�erence between anisotropic and Gaus-
sian di�usion, over a range of scales. The quantitative comparison between the two types of
di�usion comprises the evaluation of the strength and localization of the edges (an indica-
tion of the position of the outer brain boundary ultimately determined by our surface model)
detected in simulated T1 volumes (under various noise and RF inhomogeneity conditions),
given the known position of the brain boundary in the underlying digital phantom, as well
as the evaluation of the voxel classi�cation technique from T1 volumes (again under various
noise conditions), given the known class membership of the voxel of the underlying digital
phantom. The two tests are done at di�erent scales for both formulations. The second test
is deferred to the validation of the voxel classi�er, and is discussed in x2.5.2.

The edge test uses as a starting point the position of all tissue boundary of the digital
phantom, assumed to be ground truth, and computes three measurements from the di�used
T1 volume, under di�erent noise, inhomogeneity and di�usion scale characteristics, in the
immediate neighbourhood of this boundary point, as illustrated in �gure 16: average value of
themaximal gradient amplitude, in this immediate neighbourhood of known boundary points,
average localization error, along the boundary normal direction, between this maximum
gradient point and the boundary point and the average width of the shoulders (coinciding
with 80% of the maximum) of the gradient magnitude pro�le, along the normal direction.

This validation study, whose results appear in �gure 17, shows that over the range of
scales of interest, anisotropic di�usion better retains gradient magnitude information which
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Figure 17: Measurements statistics for validation and choice of scale of anisotropic di�usion,
under di�erent noise and 0% RF inhomogeneity conditions: average local maximum gradi-
ent magnitude statistics for (a) Gaussian and (b) anisotropic di�usion; average localization
error of local gradient maximum from known boundary position, for (c) Gaussian and (d)
anisotropic di�usion; average shoulder (80% of gradient magnitude maximum) width value
along the boundary, for (e) Gaussian and (f) anisotropic di�usion.
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can be used to �nd tissue boundaries. Moreover, this information also is comparably or
better localized for anisotropic di�usion, depending on the choice of statistic used to quantify
position accuracy. A comparison of the two di�usion techniques as they relate to voxel
classi�cation is pursued in the next section.

2.5.2 Validation of Semi-Automatic Voxel Classi�cation

The objectives of this validation study are to determine the feasibility of using either the
semi-supervised Fuzzy C-Means (ssFCM) or Minimum Distance (MD) algorithm to map a
T1 value or a feature vector (T1-T2 or T1-T2-PD) to the correct tissue class Ci (which
is known a priori for this study, by virtue of the digital phantom), and in particular to
choose one method over the other, based on which modalities are available, and based on
assumptions about noise (we assume once again that RF inhomogeneity can be corrected as
in [51]). The e�ect of noise and of the choice of �ltering method (including a choice of scale),
on classi�er performance is also featured here.

Figure 18 provides a comparison of the two �ltering options as they relate to the Minimum
Distance voxel classi�cation. This study uses MinimumDistance rather than semi-supervised
Fuzzy C-Means because of the nonlinear e�ect of clustering on the partitioning of parameter
space, given that we want to isolate the e�ect of noise distribution, di�usion type or scale
factor. Under all but severe noise conditions (20% and on), anisotropic di�usion is compara-
ble at very small scales and is otherwise superior to Gaussian �ltering. Moreover, we would
not expect to use a classi�er with any success under those conditions severe noise conditions.

An observation worth making about �gure 18 is that for higher scales, t � 2:0, at low
noise values ranging from 0 to 5%, the classi�cation doesn't appear to gain much from the
added consideration of T2- and PD-weighted scans. This anomaly can be cleared up by
considering erroneous voxels summed in accumulators at the pixels in one plane, say the
sagittal plane, as shown in �gure 19. In this case, the intensity of the pixel is proportional to
the number of misclassi�ed voxels at the same (y; z) coordinate, over all x values. It's clear
that misclassi�ed voxels in the multimodality case are grouped in bands, coinciding with
the borders of tissue classes, and that much of the misclassi�cation in this case is related to
border e�ects. It stands to reason that these border e�ects would worsen with increasing
scale, which is seen on all combinations of modalities. Moreover, the consideration of more
than one modality improves the classi�cation of brain tissue voxels, particularly at �ner
scales. This is borne out by considering separate classi�cation statistics for white and grey
matter voxels, which will appear in the thesis.

Finally, �gure 20 illustrate the fragility of the convergence properties of the semi-supervised
Fuzzy C-Means algorithm, which in turn justi�es our decision to ultimately opt for the Mini-
mum Distance classi�er. Figures (a), (b) and (c) illustrate the classi�cation results at various
noise levels and at various scales of anisotropic di�usion, respectively based on a T1-weighted
scan alone, on a T1/T2 feature and on a T1/T2/PD feature. Figure (d) illustrates the mi-
gration of class centroids due to clustering, from points marked \O" to points marked \X",
for T1- and T2-weighted data with 5% noise, processed with anisotropic di�usion at scale
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Figure 18: Illustration of sensitivity of MD classi�cation to noise levels, to preprocessing
method and scale, and to number of modalities: based on T1-weighted scan alone, at various
noise levels, under (a) Gaussian �ltering (GF) and (b) anisotropic di�usion (AD); based on
T1- and T2-weighted scans, under (c) GF and (d) AD; based on T1-, T2- and proton density-
weighted scans, under (e) GF and (f) AD.

27



(a) (b)

Figure 19: Spatial distribution of misclassi�ed voxels, based on accumulators in the y � z
(sagittal) plane. The brighter the pixel, the larger the number of misclassi�ed voxels having
that x position. Results for (a) T1-weighted scan alone and (b) T1- and T2-weighted scans.

t = 2:0 (this coincides with the dip in graph (b) at this scale value). Border e�ects between
CSF and grey matter, which worsen with increasing scale, can draw the GM class centroid
towards the CSF area of parameter space, causing in turn a signi�cant portion of GM voxels
to be misclassi�ed as WM or MUSCLE.

In short, this validation study con�rms the choice of anisotropic di�usion as optimal
preprocessing, based on subsequent classi�er performance. This study suggests a choice of
scale between t = 0:125 and t = 0:5, which corresponds to the � = 0:5 to � = 1:0 range.
Finally, the fragility of semi-supervised Fuzzy C-Means technique, particularly in response
to border e�ects, justi�es our decision adopt the Minimum Distance classi�er.

2.5.3 Signed Distance Computation Validation

The validation of the signed distance computation is a comparison between our method of
choice for computing the distance to the surface, the Fast Marching (FM) method, and a
gold standard obtained by a \brute force" (BF) exhaustive search for the brain boundary
point closest to each voxel. In other words, the BF technique explicitly �nds the closest
surface point for a given voxel by determining the Euclidean distance between this voxel
and each brain boundary point, and associates with this voxel the distance to and the label
of the closest surface point4, and this is compared with the distance and closest point label
obtained via the Fast Marching technique.

Brie
y, the idea behind the Fast Marching technique is that the computation of distance
from a surface or contour can be idealized, as shown for a simple 2D contour illustration in
�gure 21, as equivalent to determining the \arrival time" of an outward moving surface (or
contour), assuming it has monotonic unit speed. In other words, if we describe our initial

4On a 200 MHz Pentium, the BF approach took more than 2 weeks to produce the equivalent map
computed in less than 20 minutes by the FM method, for the 181� 217� 181 scan volume comprising the
digital phantom, although improvements to the exhaustive search have proposed, such as the k-D tree[63].
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Figure 20: Illustration of sensitivity of FCM classi�cation to noise levels, to preprocessing
method and scale, and to number of modalities: based on (a) T1-weighted scan alone, (b)
on T1- and T2-weighted scans, and (c) on T1-, T2- and proton density-weighted scans, all
after anisotropic di�usion; (d) illustration of migration of centroids over successive iterations
caused by border e�ects at noise=5% and scale t=2.0 sec., where a \o" illustrates the position
of the class centroid at the �rst iteration (coinciding with MD classi�cation) and an \x"
indicates the �nal (25th) iteration. Note the �nal position of MUSCLE/SKIN class centroid
nearly coinciding with the initial GM centroid position.

surface (contour) as a front with unit speed, and picture individuals with a stopwatch at
each voxel (pixel) in the volume (image), those who are at a point traversed by the front
at time t = 1 are in e�ect 1 pixel away from the original surface (contour). Those which
see the front at t = 2 are 2 pixels away, and so on. Similarly, we can describe the distance
to inside points in terms of the arrival time of an inward moving front originating at the
initial surface and assign a negative sign to interior points, to produce the signed distance
map required to initialize 	. The motion of the surface or contour can be expressed as the
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Figure 21: Computation of Distance and Closest Point Map for 2D contour, featuring the
\arrival time" of the contour: p0 is the closest contour point for p1 and p2.

Eikonal equation5:

krTkF = 1 . (11)

Here, T is the arrival time of the surface, this expression states in e�ect that the gradient of
this arrival time is inversely proportional to the speed of the surface.

This expression leads to a highly eÆcient and numerically stable method for estimating
the monotonic motion of a surface, and assuming uniform unit speed, for numerically esti-
mating the distance map to a surface. The method uses upwind di�erencing[47] to ensure
numerical stability, which can be likened to a front being swept outward, whose motion
estimation is based on points where the front has been and whose motion has already been
computed, rather than on points where the front is going. It exploits a minheap[48] structure
to eÆciently implement this type of di�erence equation. Details appear in [49], pp. 86-100..
Finally, this algorithm is easily modi�ed to not only store the distance to the closest surface
point at a given voxel, but the label of the closest surface point as well, which allows us to
compute a Closest Point Map from the identi�ed outer brain surface.

The brain boundary in question is obtained by �rst binarizing the digital phantom vol-
ume, by setting to 1 the grey, white and glial matter voxels and setting to 0 all other voxels,
and then computing the gradient everywhere. Because the volume is binary, the gradient
should be null everywhere but on the boundary. Moreover, we restrict our attention to the

5In 1D, this equation is derived in [49]: considering T (x) the arrival time and using distance = rate�time,
we have 1 = F dT

dx
. In multiple dimensions, rT is orthogonal to the level sets of T , and its magnitude is

inversely proportional to speed.
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Figure 22: (a) Distance Map to brain surface produced by Fast Marching (FM) technique,
with distance values ranging in the volume from 0 to 100 pixels are mapped to grey-levels 0 to
192, and brain boundary appearing in white; (b) Distance Map to brain surface produced by
Brute Force (BF) technique, with same distance to grey-level mapping as in a; (c) di�erence
between respective Distance Maps, shown as grey-level: a voxel error ranging from 0.0 to 2.0
voxels maps to 0-255; (d) the di�erence between FM and BF, averaged over voxels of similar
distance (0-1.0 voxel, 1.0-2.0 voxels, ..., 99.0-100.0 voxels) to the brain surface: the average
FM-BF di�erence value for each bin appears in the top histogram, whereas the number of
points summed in each bin is shown in the lower histogram.

boundary voxels which are taken within the voxels set to 1, which correspond to inside edge
points.

The distance map for each technique is shown in �gures 22 (a) and (b), in tri-planar
grey level image format, where a maximum distance of 100 voxels in the volume maps to
a grey-level of 192 (out of a possible 255), and where the boundary itself is overlaid in
white. The di�erence between the two maps is shown qualitively in tri-planar format in
�gure 22 (c), where 255 represents a maximum di�erence of 2.0 voxels. Moreover, the top
histogram appearing in �gure 22 (d) provides a quantitative illustration of the di�erence
between the two techniques: the di�erence value at each voxel was binned according to the
reference (Brute Force) distance to the brain surface (0.0-1.0 voxel, 1.0-2.0 voxels..., 99.0-
100.0 voxels) and the average computed for each bin. The size of the summation is shown
in the bottom histogram in �gure 22 (d). As one would expect, particularly for a distance
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Figure 23: Closest Point Maps computed by 3D (a) FM and (b) BF techniques, for the
brain boundary, labelled white, with surface labels 1-207459 mapped to grey levels 64-192,
and with ambiguously labelled voxels shown as black (0); in (c), a bar graph illustrates the
percentage of labels in agreement, as a function of distance to surface, based on the same
voxel populations presented in �gure 22 (d); (d) FM Closest Point Map with ambiguities
due to digitization artefacts eliminated with a distance threshold of 2 voxels.

computation which is based on a propagative front emanating from the original surface,
the error is cumulative over distance, and monotonically increasing (except for the very tail
which factors in very few data points).

However, perhaps more relevant than the discrepancy in computed distances between the
two methods is the comparison of the closest point labels found by each, which is illustrated
in �gure 23. The greater relevance of labels is attributable to the distance value itself only
being used in managing the narrow band (which, for a band of a half-width of 5 pixels,
corresponds to a mean discrepancy of less than .35 voxels), whereas the label of the closest
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surface point is used in the segmentation for computing the sign of the signed distance
function and for extending the image information away from the zero-level isosurface, and
in the registration with the range-based cortical surface later on, in the form of a Closest
Point Map.

Moreover, it is geometrically feasible for a voxel to have 2 or more closest surface points,
and our Fast Marching technique has an explicit check for this case, whereupon the segmen-
tation uses the �rst label (one label is required everywhere in the narrow band for the image
extension and for the sign computation) but the registration can dispense with ambiguous
voxel-surface point matches. The voxels which possess two or more closest points are shown
as black. In theory (with an analytical surface, or with voxels of in�nite resolution), they
should tend to the medial surface[11] of the volume circumscribed by the brain boundary
(white), but other streaks appear, due to the digitization of the boundary. Those which are
artefacts can be detected with a simple check on the distance between the positions of the 2
or more surface points matched with an ambiguous voxel.

2.5.4 Outer Brain Surface Identi�cation Validation

The object of the �nal validation of the model is to quantitatively estimate the accuracy of
the outer brain surface identi�cation with synthetic data and to qualitatively demonstrate
its performance on real data, involving both healthy ICBM subjects and MNI patient data
involving pathologies.

The quantitative estimation of the model accuracy is currently being conducted. We
use as a reference the distance map computed from the known brain boundary by the brute
force method discussed in the preceding section. We then run the surface model on simulated
MRI data featuring 5% noise, and from the �nal boundary, we can look up the distance to
the underlying boundary and compute overall statistics about the proximity of the model to
this boundary. Furthermore, the sensitivity of this performance to each of the 4 parameters
which determine the WM/GM Distance Threshold can be ascertained, by varying each one
about its \optimal" value. Each optimal value was established by trial and error with real
subject data.

Further validation with real data uses the same WM/GMDistance Threshold parameters,
throughout. We currently report results on healthy subject data from the ICBM database,
which appear in �gure 24 and are presently conducting tests on patient data from the MNI.

3 Range-sensing

The three-dimensional coordinates of the visible surfaces of the skin and evolving cortex
are computed by a commercial range-sensor made by Vitana Corp. (Ottawa, Canada),
which uses both laser-based triangulation and proprietary defocusing techniques to estimate
range [60]. Laser-based range-sensing is the industrial standard for quickly and accurately
acquiring dense, quantitative Our range�nder is mounted on a commercial linear positioner,
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Figure 24: Results on real T1-weighted data: (a) ICBM subject 00100; (b) ICBM subject
00101.

made by Intelligent Actuator. Typical results produced by our sensor are shown in �gure 25.

Laser-based triangulation involves projecting a thin ray of laser light onto an object,
capturing the re
ected light by a charge-coupled device (CCD), and inferring depth from the
pixel position of the re
ected point and from the geometric relationship between the position
of the laser source and the CCD. The relationship which summarizes the triangulation is
illustrated on �gure 26(a) and expressed as [60]:

z =
d l

p + l tan �
. (12)

In equation (12), z is the range value of the scene point, d is the width separating the laser
source from the CCD optical center, l is the distance from the lens to the image plane, �
is a �xed angle expressing the attitude of the laser source, and p is the pixel position of
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Figure 25: Range image of the left hemisphere of a human brain.

the re
ected point. The x-component of position is obtained by analogous triangulation.
These relationships are characterized by a factory calibration procedure, after which each
laser peak detected at pixel (i; j) on the CCD is interpreted as the (x; z) position of the
point of the scene illuminated by the incident laser ray. Ordinarily, in order to get range
information at regular samples of a surface, this ray would have to be swept along two axes
normal to each other and spanning a plane which is aligned with a local plane tangent to
the anatomical surface of interest. However, our sensor dispenses with one sweep axis by
optically spreading the ray into a laser plane. The intersection of this plane with the imaged
object instantaneously produces a 2D range-map of a \slice" of the surface, which appears as
a curve of 256 points, or laser pro�le, on the CCD 6. A 3D surface is then obtained by linearly
sweeping the sensor, ideally in a direction normal to the laser plane, across the surface of
interest. The coordinate y is given by the positioner, and the three coordinate axes form an
orthogonal basis.

Defocusing is implemented by allowing the laser light to pass through two holes, at a
predetermined distance d apart, rather than one. The CCD sees two laser pro�les instead
of one, and range is determined by measuring the space b (in each pixel column) between
the two images b1 and b2 of a laser point, as illustrated in �gure 26(b), according to the
expression:

z =
1

o�1 + b=(d l)
, (13)

where l and d are the lens-image plane and laser diode-optical center distances, as before. The

6Laser pro�les are acquired at a 60 Hz rate: collecting a 256� 256 range image, consisting of 256 pro�les
spanning the surface of interest, requires just over four seconds.
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Figure 26: Range-sensing: (a) laser triangulation; (b) defocusing; (c) equipment

range measurements obtained by triangulation and by defocusing are combined by assigning
weights to the two expressions for z given in expressions (12) and (13) [60].

Finally, the sensor has a depth of �eld of 135 mm (from 108 mm to 243 mm), which
for a 256-pixel CCD corresponds to roughly .5 mm pixel accuracy. The �eld of view at a
typical range is around 10-12 cm (depending on the proximity of the sensor to the surface),
which gives it a .4-.5 mm pixel accuracy width-wise. The positioner which linearly sweeps
the sensor across the skin or cortical surface possesses .02 mm repeatability and is capable of
150 mm travel at speeds up to 330 mm/sec. During this linear travel, our program acquires
256 laser pro�les at a constant rate, when the positioner is known to move at a constant
speed. The equal spacing of our samples, resulting from the CCD being regular (in the i-k
pixel coordinates, not in x-z spatial coordinates) and from constant-rate acquisition along
the y-axis, is exploited later on in the registration process. Both the sensor and the positioner
are supplied with Windows-based software interfaces and dedicated control hardware. Both
software interfaces support a standalone program calling vendor-supplied libraries. A picture
of our range-sensing system appears in �gure 26(c).

4 Probe-based Calibration and Sensor Base Tracking

Procedure

The objective of the calibration and sensor base tracking procedure is to compute the rigid
transformation which relates range image (inner) coordinates to MRI coordinates. This
transformation can then be applied to the outer brain surface identi�ed in the �rst stage,
to relate it to range images of the exposed brain surface in the OR. An overview of the
calibration geometry is illustrated in �gure 27 (a). The goal of the calibration stage, which
takes place outside of the OR, is to relate the inner range-sensor reference to its outer side-
plates. The goal of the sensor base tracking stage is to establish the position of the outer
side-plates at time tn, n � 0 in the OR, with respect to the probe reference, and use this
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Figure 27: Calibration procedure: (a) overview of geometry; (b) picture of calibration tool
and side-plate bolted to sensor; (c) range image of calibration tool displayed as grey level
image (the greater the range value, the whiter the pixel); (d) detected range pits, after
component analysis and pruning by distance-to-neighbour constraints.

information along with the calibration results to express the inner range-sensor reference
with respect to the probe reference.

The calibration procedure (see �gure 27(a) and (b)) consists of the following steps (as-
suming that the sensor is in stable con�guration through the calibration procedure, and that
the sensor is brought to home position, y = 0, after each range image acquisition, as it is
currently programmed to do), which have been implemented but not thoroughly validated:

1. Range-sensing of a wedding-cake (i.e.: non-coplanar) calibration tool (see �gure 27(c)),
featuring an array of hemispherical milled holes, or pits of 2mm radius (corresponding
to the size of the probe tip), producing an range image such as in �gure 27 (b) (note
one missing pit, to break the symmetry and allow us to ascertain the orientation of
the tool within the range image).

2. Automatic identi�cation of hemispherical pits prange;tcaltool;j (see �gure 27) within range
image, assuming a hemispherical template of 2mm radius, by template matching [46].
We assume a z-reference which is estimated by taking the median of 8-neighbouring
range points 8 pixels removed from the current coordinate. We then threshold the
correlation values in order to retain only those which correlate highly with the template
(using a histogram of these values to select the threshold), then perform a connected
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component analysis [46] in order to establish the contiguous regions of high \pitness".
Within each such region, we �nd the point of maximal correlation value. We also
eliminate false positives (near discontinuities within the tool) on the basis of known
distances to neighbouring pits (using projections on 2D image plane: i.e.: neglecting
the z-component of the range data).

3. Probe-space identi�cation of pits in the tool, pprobe;tcaltool;j , by insertion of the probe tip.

4. Registration of range pits prange;tcaltool;j with probe-space coordinates of the pits pprobe;tcaltool;j :
the transformation from probe reference to internal range reference (for the calibration
procedure) Trange;tcal

probe is determined from the point pairs by Arun's SVD technique [2].

5. Probe-space identi�cation of pits in sensor side-plates: pprobe;tcalsides;i .

6. Apply probe-range transformation to side-plate pits:

prangesides;i = Trange;tcal
probe pprobe;tcalsides;i . (14)

Note that the points prangesides;i shouldn't depend on time, since the side-plates are bolted
to the sensor and the positioner carriage is always in home (y = 0) position when we
track the side-plates with the probe.

The sensor base tracking procedure in the OR at tn, n � 0 (initially and otherwise when
sensor base tracking is required) is as follows:

1. Probe-space identi�cation of pits in sensor side-plates, to characterize the new sensor
base position: pprobe;tnsides;i .

2. Match probe-space pits with the points prangesides;i to determine the probe reference-range

transformation Tprobe;tn
range for the con�guration at time tn.

3. The range data comprising surface SB are then related to MRI-space anatomical sur-
faces by considering the probe-MRI transformation computed in typical IGNS fashion,
along with the probe reference-range transformation:

xMRI
SB ;tn

= TMRI;tn
probe Tprobe;tn

range xrangeSB ;tn
. (15)

In general, Tprobe;tn
range can change over time (particularly if the sensor base is retracted

out of the way of the surgeon in between range scans), whereas TMRI;tn
probe will tend to

be stable due to the use of a May�eld clamp which generally keeps the patient's head
in place, although some slippage may occur and can be ascertained with a tracker [56]
aÆxed to the patient's head.

Validating both the sensor base tracking involves the skin phantom shown in �gure 28.
This is currently underway. An absolute measure of the error can be computed by auto-
matically detecting the position of the glue-on landmarks in the range image, by template
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(a) (b)

Figure 28: (a)\Poupoune", the exotic skin phantom; (b) range image of the right side of the
head of Poupoune.

matching, and comparing this position to that which is predicted by the position of the
landmarks in MR space, as determined by the user, and transformed according to the ro-
tation and translation computed by this procedure. The validation which is under way will
superimpose on this range image the probe-based positions of the glue-on landmarks, as well
as their image-space homologs, based on the probe-range and MRI-range transformations
computed by the calibration and sensor base tracking procedure. A quantitative estimate of
the error can then be obtained by extracting the centers of the landmarks on the range image,
by template matching, and comparing them with the transformed probe- and MRI-based
landmark centers.

5 Surface Displacement Estimation

5.1 Non-rigid Brain Motion Estimation

Our approach to estimating non-rigid brain deformation is by �rst establishing a baseline for
this movement (i.e.: the preoperative outer brain surface computed in x2 rigidly transformed
to range space by the sensor base tracking procedure), and measuring incremental non-rigid
motion with an Iterative Closest Point (ICP) [8, 31] surface registration procedure. Such a
registration procedure works as follows: starting from an initial (possibly rough) alignment
between two surfaces SA and SB, iteratively uses the set of closest point pairs (as opposed
to features of similar shape, for example) between the two surfaces to determine a new
incremental transformation. The incremental transformation Tk corresponding to the kth

39



iteration is then applied to one of the surfaces (which may already be transformed), namely
Tk�1SB, gradually improving its alignment with SA. The iterative process halts when the
registration error between SA and TkSB is less than some preset tolerance.

In general, ICP registration procedures make use of formal search algorithms to �nd the
set of closest point pairs which determine the transformation Tk, usually with some kind of
preprocessing of the data which improves the eÆciency of the search (for a survey see [4]).
As emphasized in x 2, we make use of the Fast Marching technique to produce a Closest
Point Map of the �nal outer brain surface in the MRI scan. This map allows us to do away
with a search for closest points by simply looking them up and to produce explicit point pairs
which can take advantage of closed-form transformation algorithms, thereby making each
iteration of our ICP technique essentially instantaneous.

If the motion we are modelling were rigid, the iterative transformation Tk would simply
consist of a rotation Rk and a translation tk which minimize the least-squares kth iteration
registration error:

min
Rk;tk

NX
i=1

kxAi
� (RkxBi

+ tk)k
2 . (16)

However, the motion we want to model is inherently non-rigid, so that the displacement
must be expressed as a function with piecewise-local support, such as a spline. Furthermore,
this motion can be expressed as a 2D surface spline, since it takes place within the domain
of the range image, which is an open surface. Moreover, because the range image consists
of equidistant data, the surface spline de�ned over its domain involves no re-sampling of
irregular data. Lastly, we exploit the regularity of the range domain by using extremely
eÆcient recursive smoothing splines [58, 59] to model the displacement function.

In practice, our ICP algorithm features a rigid motion stage which can compensate sig-
ni�cant global tissue shift, followed by non-rigid motion characterization. We use Arun's
SVD technique[2] to compute the rigid transformation which estimates global shift. Our
non-rigid characterization draws on the work of Unser et al [58, 59], which expresses the
�tting of interpolating, smoothing or approximating splines as a sequence of �ltering stages,
all of which can be implemented as recursive �lters, provided that the data are sampled at
regular positions. We adopt a smoothing spline approach, whose �rst stage is a convolution
with a smoothing kernel 7

Sn
� (Z) = 1=

�
Bn
1 (Z) + �(�Z + 2� Z�1)

n+1

2

�
, (17)

where Bn
1 (Z) is the indirect B-spline transform given by Unser [58], n is the order of the

spline �tting and � is the regularization parameter of the smoothing. This stage produces
B-spline coeÆcients and is followed by a convolution with the indirect transform Bn

1 (Z) to
yield the smoothed output. The �lters can simply be cascaded to implement smoothing in
2D.

7Note: Z here relates to the Z-transform, not to be confused with the depth axis of the range-sensor.
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We adopt a �rst-order �t to limit overshoots due to a higher-order continuity constraint,
near the boundary of the craneotomy, outside of which the displacement should be null after
rigid registration. These operations in Z-space translate to local operations in 1D involving
immediately neighbouring range image points, independently of the value of the smoothing
parameter �. Just prior to each spline �tting operation, in order to de�ne a displacement
vector at image coordinates where range information is lacking, due to possible occlusion or
low signal value, an average of valid neighbouring displacement vectors, weighted according to
the proximity of the corresponding range point, is propagated and iteratively re�ned. Lastly,
in order to make the non-rigid motion estimation well-behaved, the smoothing parameter
� is initially set very high, and is gradually lowered as the process iterates, progressively
resolving �ner-level motion detail. Just as for the rigid ICP stage, each iteration of the
non-rigid surface motion estimation is essentially instantaneous.

The justi�cation for emphasizing computational eÆciency here is two-pronged: clinical
acceptability and the inherent temporal underdetermination in estimating non-rigid motion.
Clinical acceptability hinges on allowing the surgeon to easily deploy the system, get the sur-
face displacement quickly, use this surface information with eÆcient FEM schemes [3, 20] to
estimate volumetric displacement, and proceed with the surgery. The issue of underdetermi-
nacy implies that it makes sense to enable the acquisition of a large number of displacement
maps over time if needed, just as it does to use dense point displacement information to
characterize non-rigid motion between any two successive instants.

5.2 Validation of Surface Motion Estimation

Quantitative assessment of the accuracy of our non-rigid surface registration is based on
synthesizing range images from subpatches of the known cortical boundary of the digital
phantom, and applying an analytical displacement function to each subpatch. The results of
our motion estimation based on the ICP technique can then be compared with the analytical
displacement function. This study is currently under way. The analytic expression for surface
motion is expressed in spherical coordinates. We are investigating

� a simple global 
attening of the subpatch where the amplitude of the motion is linearly
varying with � and � from the centre of the patch to its extremities, and

� a simple global 
attening, as above, with a spatial sinusoid added to it.

This is applied to subpatches coinciding with the top, back, front, and left and right sides of
the head, namely subpatches centered at � = 0, and at � = �=4 and � = 0, � = �=2, � = pi,
and � = ��=2.

A more physically realistic assessment is possible through a brain-shaped elastic phantom,
which is described in appendix A. Non-rigid surface motion is the result of turning the set
screws under the support plate of our elastic phantom, triggering a deformation of up to
15mm at the top. We can image the cortical surface with our range-sensor, while maintaining
the support plate �xed with respect to the range-sensor/positioner reference (see �gure
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Figure 29: Typical non-rigid registration results: (a) MRI level-set surface rigidly registered
to the range image of the deformed phantom, in range space (both decimated by a factor
of 2); (b) MRI level-set surface non-rigidly registered to the range image of the deformed
phantom (both decimated by a factor of 2); (c) slice through (a), at y = 79:592; (d) slice
through (b), at y = 79:592; (e) evolution of RMS point-pair distance with ICP iteration.

30(b)). We then compare the results of a strictly rigid transformation computation with a
sequence of rigid and non-rigid ICP registrations. Each option uses a rough manual initial
alignment based on the corners of the range domain. This comparison is currently based
on visual inspection of how the original MRI level-set surface, subject to the inverse of the
range-to-MRI transformation, aligns with the range data of the deformed cortical surface,
and on the two plots of the RMS distance between point-pairs against iteration number.
The abrupt improvement of RMS distance on the second curve indicates the initiation of the
non-rigid stage, with an earlier rigid stage termination than the rigid-body stage illustrated
by the �rst curve. If the displacement vectors between the original (many-to-one) closest
point pairs are used to determine the non-rigid spline-based transformation, we �nd that they
distort the displacement map by in
ating the components (essentially along x and y) normal
to the shortest path at each point between the two surfaces. We obtain better results by
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considering only the displacements of mutually closest (i.e.: one-to-one) pairs, which can be
determined fairly easily from the original set of point pairs, and iteratively propagating this
information everywhere else, and this approach is what is re
ected in �gure 29. However, we
should again emphasize that the RMS error was computed for all closest point pairs, which
are many-to-1, and that a measure based on mutually closest pairs would give a better
measure of the quality of the registration.

6 Finite Element Modelling

The four preceding stages provide a dense nonrigid displacement map of the part of the
outer cortex which is visible in the OR. Obviously, a surgeon is interested in what goes
on below this surface as well. To this end, the last stage uses known displacements of the
outer cortical surface to constrain a �nite element model with realistic material properties.
The displacement �nite element method numerically solves for unknown displacements, de-
formations, stresses, forces and possibly other variables of a solid body. An exact solution
would require force and momentum equilibrium at all times everywhere in the body, but
the �nite element method replaces this requirement with the weaker one that equilibrium
must be maintained in an average sense over a �nite number of divisions of the volume of
the body [6, 23]. The actual division of complex geometries into simple elements, such as
tetrahedra and hexahedra, corresponds to the meshing problem[43], and is an still active
research area.

Our intent here is simply to provide proof of concept with our elastic brain phantom.
The meshing issue should be resolved by public domain software, such as QMG[45], provided
that a triangulated surface of the phantom can be input in QMG format, and that the rigid
part of the meshing, namely the imbedded disk and rod and support plate, can be meshed
interactively. The �nite element modeling per se will use a simple viscoelastic ABAQUS
model. We plan on using known properties of PVA-C as input to ABAQUS. Validation will be
a comparison between the displacement predicted by ABAQUS, and the measured movement
of imbedded glass beads, tracked over successive MRI scans (the rigid transformation between
successive scans can be ascertained by glue-on landmarks on the support plate).

7 Summary

We've presented a method for estimating intrasurgical brain shift, featuring �ve stages: semi-
automatic outer brain surface identi�cation, range-sensing of the exposed brain surface in
the OR, a procedure for the rigid registration of the range and MRI spaces, non-rigid cortical
motion tracking, and realistic �nite-element modelling of the patient's head.

The surface identi�cation scheme is based on the level-set framework, and features two
of our contributions. First, we integrate voxel classi�cation results into the image-based
speed function, providing it with higher-level anatomical information in 
exible manner.
We also stabilize the estimation of the outer brain surface, against possible bleeding e�ects
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due to lack of T1 contrast between grey matter and nearby muscle, skin and sagittal sinus
voxels. This is done by sweeping the model outward in two stages, one which �nds the white
matter boundary, and another which pushes the model through grey matter voxels deemed
close to the previous boundary, to capture the outer brain surface. Second, we feature a
postprocessing stage where a Closest Point Map is computed for the outer brain surfaces,
which subsequently makes each iteration of the Iterative Closest Point registration essentially
instantaneous. Validation makes use of a digital anthropomorphic phantom and of a MRI
simulator, both developped at the MNI.

The range-sensing stage also represents a contribution of ours, in that it is the �rst
application of laser-based range-sensing to brain shift estimation. The rigid transformation
between range and MRI coordinates is handled by a calibration and sensor based tracking
procedure. Validation of the procedure is under way, and makes use of a skin phantom with
glue-on landmarks.

The non-rigid surface registration is an Iterative Closest Point technique. Our contri-
bution here is in using a Closest Point Map and recursive splines to eÆciently �nd closest
point pairs and to compute the transformation determined by these pairs. A qualitative
validation, using an elastic brain phantom, is featured here. A quantitative study, based on
synthesizing a range image from the known cortical boundary of the digital phantom and
warping it analytically, is currently underway.

A simple proof of concept of the �nite-element model stage is planned, with the elastic
brain phantom, and will involve existing public domain meshing software, as well as com-
mercial FEM software. These results will be compared against displacements determined
from a series of MRI scans of the phantom, to track the movement of imbedded glass beads.

A Non-Clinical Validation: Elastic Brain Phantom

For the purpose of reproducing non-rigid cortical movement outside the OR, we have im-
plemented a brain-shaped phantom with elastic material properties. We use a jello mold
in the shape of the brain (obtained from the Brainstorms website [10]), into which we pour
PolyVinyl Alcohol Cryogel (PVA-C), as illustrated in �gure 30(a). The latter is a relatively
viscous liquid, which upon freezing and thawing, becomes an elastic solid [15] as shown in
�gure 30(b). Furthermore, PVA-C can sustain several freeze-thaw cycles to acquire more
rigidity, and the PVA concentration can also be manipulated to that e�ect, producing a
Young's modulus E in the .1 to .7 MPa spectrum [52]. This is comparable to values pub-
lished in the literature for gray and white matter material properties. 8

This phantom rests on a support plate of plexiglass (usable within an MR scanner), and
features a moving assembly consisting of a small disk and rod, also of plexiglass, imbedded

8Zhou [64], for example, lists bulk moduli K of .219 GPa and .349 GPa, for gray and white matter, as
well as a Poisson's ratio � of .4996 for each. These values translate to values of E of .525 MPa and .837
MPa respectively, based on the formula K = E=[3(1� 2�)] for isotropically elastic material [37]. The values
found elsewhere in the literature are closer to the lower end of the PVA-C spectrum [40].
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(a) (b)

Figure 30: Elastic PVA-C brain phantom: (a) liquid stage (b) �nal result after freezing and
thawing.

within the elastic material, as well as some glass beads used to validate the surface displace-
ment/FEM approach to volumetric motion estimation. The other end of the rod (outside
the elastic material) is attached to an external plate which rests on the opposite side of the
support plate. The position of the moving assembly can be modi�ed by means of some set
screws pushing the external plate away from the support plate, thus drawing the embedded
disk toward the support plate and triggering a compression of the elastic material.
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