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Abstract

We describe a generic methodol ogy to correct 3-D
partial volume effects in clinical emission scans. It
is based on prior knowledge of tracer biodistribution
and tomographic imaging characteristics. We derive
this information from registered and segmented
MR/CT data. Two fast numerical algorithms are
then used to estimate structure-specific recovery
coefficients and activity spillover contributions. In
this work we evauate our method using MR/PET
data acquired from a 3-D brain phantom. It is made
of a human skull and plastic chambers to emulate
radiotracer uptake in neuroreceptor imaging studies.
Regional activity values among striatal structures
are typically underestimated by 20-45 % depending
on their spatial location. After correction they are
restored to within 5 % of the true concentration.
We also add several automatic steps to increase
computationa efficiency and simplify its usage in
clinical environment.

. INTRODUCTION

Partial volume effects originate primarily from
the limited 3-D image resolution in PET/SPECT
systems. Thisis a big problem because of irregular
and dynamic activity distribution in the body. It
will produce spatially variant imaging distortions
and non-stationary bias and variance in time activity
curves.

There exist many interests in image restoration
methods to solve partial volume problems. In recent
years it has been a common practice to anayze
tomographic data using regional templates created
from multimodality images [1]. This gives valuable
information with proper image segmentation. We
have seen increased use of correlated MR data in
Bayesian image reconstruction [2, 3, 4]. Thisisthe
most fundamental approach which reconstructs each
frame iteratively. It isnot in routine clinical use due
to high computational cost.
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It is more desirable to employ non-iterative
methods for the in-vivo correction of the 3-D partial
volume effects in regiona functional data. Some
early agorithms rely on simple calculations in
image space [5, 6]. However they require explicit
estimates of background activity. While possible in
some cases this is not always applicable in general
clinica studies. We have developed an elegant
method free from any unredlistic assumptions
[7]. It works by estimating the magnitude of pure
recovery and activity spillover between different
functional entities in a given set of ROIs. In this
paper we describe many improvements implemented
to automate our method and make it independent of
a particular tomograph.

[I. COMPUTATIONAL METHOD

It is known that the observed activity within a
particular tissue is the weighted sum of the true
activity from all the active tissues in the biological
system. Assume there are N different tissues
participating in the imaging experiment each with a
relative homogeneous tracer uptake. Let vectors ¢;
and v; denote the mean and variance measured from
any setsof ROI templates. One can easily derivethis
relationship:
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where w;; is the transfer matrix and 7 the true
activity of each tissue. Note that the weighting
factors w;; depend on activity distribution but
independent of its concentration. This then
represents a set of linear equations which can be
solved to obtain the true regional values:
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where w;; is the inverse matrix of w;; and V; the
variance of the corrected data. Both of them depend

on 3-D image resolution and data analysis strategy.



Fig. 1 Extraction of the transfer matrix from individual tissue maps
and anatomical templates of the brain phantom.

Collectively w;; reflects the interaction of each
tissue with the scanner and spillover effects among
themselves. One can determine its elements only
by accurate simulation of radiotracer distribution
and 3-D tomograph resolution. We have already
described a procedure to calculate them from 3-D
anatomical maps [7]. Simulated images of each
structure are generated separately and analyzed with
the same ROI setsasin clinical scans. Fig. 1 shows
a pictoria representation of this process. We then
estimate the fraction of activity from the structure
itself and that from its neighboring structures.
Afterwards one can compute the true activity and
variance values of each tissue by (2). We use the
same matrix over all TACs extracted from dynamic
images.

In our previous work we calculate the transfer
matrix by going through the projection/backprojection
of a multi-slice PET scanner. It can handle only
a small number of structures with uniform tracer
distribution. We have since incorporated many
additional steps to make our programs faster and
easy to implement. Now they work with any number
of tissues with non-uniform tracer uptake. In
particular we have implemented a 3-D convolution
algorithm in image space. Thisallows usto compute
the correction matrix based on 3-D image resolution
of any tomographic systems but independent of
their acquisition geometry. We can perform 3-D
correction in dynamic TACs automatically with
given anatomical maps and ROI sets.

Fig. 2 Anatomical templates of the striatal structures and PET images
of the skull phantom with a6 mm Hanning filter.

[11. EXPERIMENTAL RESULTS

We evaluated the accuracy and precision of our
algorithms by scanning a 3-D human skull phantom
on MR and PET scanners. It contains separate
compartments of striatum and ventricles enclosed in
amain chamber. A uniform F-18 solution was filled
in the regions of caudate nuclei (CN), putamen (PU)
and globus pallidus (GP) with a warm background
in the main cavity (BKG). After registration MR
images were segmented into individual volumetric
structures. We aso drew irregular boundaries
dightly insde each of them covering four PET
dicesin Fig. 2. With a6.5 mm separation they have
around 5 M counts. Areas of small ROIs vary from
52 - 288 mm? with large ones between 602 - 1566
cm?.

We then extracted the mean activity and standard
deviation within each structure which were further
corrected according to (2). Both were converted into
recovery coefficients using the true activity in each
compartment. Table 1 shows sample results of one
image in the middle of the phantom. As expected
we observe most errorsin the striatal structures. Our
method improves the accuracy of activity estimates
by more than 30% while increasing the coefficient of
variation by about 50%. We see even larger biasesin
the measured data from other slices with substantial



Tablel
A typical transfer matrix of the skull phantom. Mean and variance
data of the regional recovery coefficients before/after restoration.

ID CN PU GP BKG
cn 0.672 0.018 0.008 0.233
pu | 0037 0483 0.112 0.358
gp | 0022 0070 0611 0.258
bkg | 0.000 0.000 0.000 0.989
obs | 0.726 0.693 0.756 0.971
std | 0.060 0.095 0.023 0.124
corr | 0.954 0942 0.986 0.982
std | 0.090 0.203 0.046 0.125

gpatia variability. This comes from differences in
the object size relative to the 3-D image resolution.
Such errors are reduced to within about 5% after
correction with tolerable noise amplification. Using
procedures described in [8] we have done extensive
simulations of dynamic PET studies with the human
brain MRI data. Partial volume corrections show
complete restoration of both the shapes of TACs and
the extracted physiological constants.

IV. CONCLUSIONS

We have established a general methodology
which is capable of removing 3-D partial volume
distortions in dynamic emission studies using the
correlated MR/CT images. The key element of
this method is the estimation of tissue recovery
and cross-contamination fractions by imaging each
structure separately. After obtaining the promising
results from dynamic PET data in the brain, we
expect great improvement in imaging accuracy
from cardiac scans as well. Its applications rely on
the correct identification of the binding structures
involved in the study and all the surrounding
tissues with different kinetic properties. With our
extensions it becomes usable in any user-selected
imaging protocols and tomograph systems. This
will reduce/eliminate regional quantitation errors
due to scan-specific characteristics and anatomical
differences.
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