
MNI .obj file format

Robert D. Vincent

April 4, 2005

1

Contents

1 Introduction 3

2 Basics 3
2.1 Basic types . 3
2.2 Compound types . 3
2.3 Object classes . 4

3 Object record details 5
3.1 Lines . 5
3.2 Marker . 6
3.3 Model . 6
3.4 Pixels . 6
3.5 Polygons . 7
3.6 Quadmesh . 8
3.7 Text . 9

4 Implementation 9

2

1 Introduction

The MNI .obj file format was designed as a simple storage format for representations
of geometric objects. Overall, an MNI .obj file may have either an ASCII and a binary
representation. In ASCII files, space and newline characters serve as separators for
data fields, but have no other significance to the format.

All of the original design and implementation of this format was the work of David
MacDonald. This document borrows extensively from David’s existing comments and
documentation.

2 Basics

A .obj file consists of a simple list of object records which may be in one of seven
classes. Each object record is introduced by a single ASCII alphabetic character that
determines the class of the object record. For binary records, the character is in lower
case. For ASCII records, the character is in upper case. The size of the record itself
is variable, but is typically determined by certain key fields that define the number of
vertices or points in the object.

2.1 Basic types

File data consists of five fundamental types:char (alphabetic object class specifiers),
float, integer, string, or boolean.

Because the ASCII library is implemented using standard “C” functions such as
fscanf and fprintf , the textual representations of numeric types are quite stan-
dard. Integervalues consist of an optional sign (’+’ or ’-’) followed by one or more
decimal digits. Float values will consist of an optional sign followed by an integer
part consisting of one or more decimal digits, followed by an optional decimal point,
followed by an optional fractional part consisting of one or more decimal digits, and
finally an optional exponent specifier of the form ’e’ or ’E’ followed by an optional
sign and an integer exponent. Either the integer part or the fractional part must have a
non-zero length.

In the case of binary files, there is no clear specification of the format or “endian-
ness” of the data. It can be assumed thatintegervalues will be 32-bit, 2’s complement
integers, and thatfloatnumbers will be 32-bit IEEE floating point values.

In ASCII files, astring is represented as a sequence of zero or more characters
surrounded by either single quotes, double quotes, or back quotes.

In binary files, astring is represented as a 32-bit integer length followed by the
specified number of 8-bit bytes.

In ASCII files,booleanvalues are represented by the ASCII character ’f’ or ’F’ for
FALSE, and ’t’ or ’T’ for TRUE.

In binary files,booleanvalues are simply integer values. Any non-zero value is
interpreted as representing logical TRUE, zero is interpreted as FALSE.

3

2.2 Compound types

The MNI .obj format defines four compound types:point, colour, vector, andsurfprop,
a surface property record.

A point is defined by three floating point numbers corresponding to the point’s
location along the X, Y, and Z axis respectively. The range of these values is arbitrary.

The second compound type defined by this format is thecolour object. A colour
is defined by four floating-point numbers in the interval 0..1, representing red, blue,
green, and alpha values. The alpha value is typically one.

A vectoris similar to a point object in structure, consisting of three values for the X,
Y, and Z components of the vector. Vectors are assumed to be normalized unit vectors,
therefore all values should be in the range -1.0...+1.0.

A surfpropstructure is composed of five floating point parameters which define the
appearance of a surface material. The definition of these values was based largely on
the SGI IRIS Graphics Library and OpenGL specifications. The five members of a
surface property structure are defined as follows:

• Ambient colour (A)

This value in the range 0...1 defines the intensity of the surface’s ambient colour,
as a proportion of the surface’s specified colour.

• Diffuse reflectivity (D)

This value in the range 0...1 sets the diffuse reflectivity of the object’s surface, as
a proportion of the surface’s specified colour.

• Specular reflectance (S)

This value in the range 0...1 specifies the specular reflectance of the object sur-
face. Specular reflectance is assumed to be uniform over the colour spectrum.

• Specular scattering exponent (SE)

This value in the range 0...128 specifies the specular scattering exponent of the
material. The higher the value, the smoother the surface appearance and the more
focused the specular highlight.

• Transparency (T)

This value in the range 0...1 specifies the transparency of the surface. This value
may be ignored in many implementations, depending on the graphics library in
use and the capabilities of the graphics controller.

2.3 Object classes

The following eight object classes are defined by the MNI .obj file format.

• ’L’ (Lines) - A group of line segments.

• ’M’ (Marker) - A tag or marker point.

4

• ’F’ (Model) - A reference to an external .obj file.

• ’X’ (Pixels) - An 2-dimensional bitmap.

• ’P’ (Polygons) - A set of closed polygons.

• ’Q’ (Quadmesh) - A quadrilateral mesh.

• ’T’ (Text) - A text label.

The ’V’ (Volume) character is reserved but not utilized.

3 Object record details

3.1 Lines

A lines object is used to represent a series of line segments.

• thickness (float)

This value specifies the overall thickness of the line segments. It must be within
the range 0.001...20.0.

• npoints (integer)

This specifies the total number of distinct vertices in the lines object

• point array (array ofpoint)

A list of the coordinates for each distinct vertex in the lines object. Note that
vertices may be reused if the endindices and indices fields are set appropriately.

• nitems (integer)

The total number of line segments

• colour flag (integer)

A flag indicating the number of colours allocated in this object. A value of zero
specifies that single colour applies to all line segments. A value of one specifies
that colours are specified on a per-line basis. A value of two specifies that colours
are specified on a per-vertex basis.

• colour table (array ofcolour)

1The RGB colour values to be associated with the line segments. The length of
this section may be either 1 (ifcolour flag is 0), nitems (if colour flag is 1) or
npoints (if colour flag is 2).

• end indices (array ofinteger)

This is a list of lengthnitems that specifies the index of the last element in the
indicesarray for each group of line segments in the lines object.

5

• indices (array ofinteger)

The integer index into the pointarray that specifies how each of the vertices is
assigned to each line segment. The length of this array must be equal to the
greatest value in theend indicesarray plus one.

3.2 Marker

A marker object is used to assign a special meaning to a position in the object. The
marker can be associated with a specific patient, anatomical structure, and text com-
ment.

• type (integer) A value of zero indicates this marker should be displayed as a box,
while a value of one indicates a sphere.

• size (float) The desired size of the marker. The units and interpretation are not
clearly specified.

• colour (colour) The desired colour for the marker.

• position (point) The location of the maker.

• structureid (integer) An integer value associating this marker with a specific
anatomical structure.

• patientid (integer) An integer value associating this marker with a particular
patient.

• label (string) A string to be displayed along with the marker.

3.3 Model

A model record is used to incorporate the contents of another .obj file by reference.
Processing of model records isnot automatically handled by the library, it is up to the
calling program to read the external file.

• filename (string)

3.4 Pixels

A pixels record stores a two-dimensional bitmap object.

• pixel type (integer)

This field specifies the type of the pixelarray field. The pixel type can take a
value of either 0, 1 or 2. A value of zero indicates that the pixel array values are
eight bit color indices of typeinteger. A value of one indicates that pixel values
are sixteen bit color indices of typeinteger. A value of two indicates that pixel
values are of RGB values of typecolour.

6

• x size (integer)

The extent of the bitmap in the horizontal direction.

• y size (integer)

The extent of the bitmap in the vertical direction.

• pixel array (see pixeltype field)

The array of pixel values, with a total of xsize * y size elements. Pixels are
stored such that the upper left corner is the first pixel in the array, and the lower
right corner is the last pixel in the array.

3.5 Polygons

Polygon records may be in either compressed or uncompressed format. Compressed
format is reserved for sets of polygons with tetrahedral topology.

The uncompressed format is as follows:

• surfprop (surfprop)

Surface properties for the polygons.

• npoints (integer)

Number of distinct vertices in the aggregate polygon object.

• point array (array ofpoint)

List of distinct vertices that define this group of polygons. Note that vertices may
be reused if the endindices and indices fields are set appropriately.

• normals (array ofvector)

List of point normals for each point.

• nitems (integer)

Number of polygons defined.

• colour flag (integer)

A flag indicating the number of colours allocated in this object. A value of
zero specifies that single colour applies to all line segments. A value of one
specifies that colours are specified on a per-item basis. A value of two specifies
that colours are specified on a per-vertex basis.

• colour table (array ofcolour)

The RGB colour values to be associated with the polygons. The length of this
section may be either 1 (ifcolour flag is 0), nitems (if colour flag is 1) or
npoints (if colour flag is 2).

7

• end indices (array ofinteger)

This is a list of lengthnitems that specifies the index of the element in the indices
list associated with each successive polygon.

• indices (array ofinteger)

A list of integer indices into thepoint array that specifies how each of the ver-
tices is assigned to each polygon. The length of this array must be equal to the
greatest value in theend indicesarray plus one.

The compressed format is distinguised by the sign of the field after the surface
properties, which should always be negative. Use of the compressed format is reserved
for polygons with tetrahedral topology.

• surfprop (surfprop)

Surface properties for the polygons.

• -nitems (integer)

Number of polygons, multiplied by -1.

• point array (array ofpoint)

List of vertices that define this group of polygons.

• colour flag (integer)

A flag indicating the number of colours allocated in this object. A value of
zero specifies that single colour applies to all line segments. A value of one
specifies that colours are specified on a per-item basis. A value of two specifies
that colours are specified on a per-vertex basis.

• colour table (array ofcolour)

The RGB colour values to be associated with the polygons. The length of this
section may be either 1 (ifcolour flag is 0), nitems (ifcolour flag is 1) or npoints
(if colour flag is 2).

3.6 Quadmesh

Quadrilateral mesh.

• surfprop (surfprop)

Surface properties for the mesh.

• m (integer)

The number of rows in the mesh.

• n (integer)

The number of columns in the mesh.

8

• m closed (boolean)

A boolean specifying whether the rows have their extreme points joined by an
edge.

• n closed (boolean)

A boolean specifying whether the columns have their extreme points joined by
an edge.

• colour flag (integer)

A flag indicating the number of colours allocated in this object. A value of
zero specifies that single colour applies to all line segments. A value of one
specifies that colours are specified on a per-item basis. A value of two specifies
that colours are specified on a per-vertex basis.

• colour table (array ofcolour)

The RGB colour values to be associated with the mesh. The length of this section
may be either 1 (ifcolour flag is 0), (m − 1) ∗ (n − 1) (if colour flag is 1) or
m ∗ n (if colour flag is 2).

• point array (array ofpoint)

A list of points, of total lengthn ∗m.

• normals (array ofvector)

A list of point normals, of total lengthn ∗m.

3.7 Text

A text object specifies a text label.

• font type (integer)

This integer flag is set to zero to specify a fixed-width font, or to one for propor-
tional spaced font.

• text size (float)

The desired font size.

• colour (colour)

The desired text colour.

• point (point)

The 3D position at which to display the text.

• text (string)

The text to display.

9

4 Implementation

The object file format is implemented by the “BIC programmer’s library” (BICPL).
The low-level I/O functions for basic types are defined in the “volumeio” library.

The following BICPL functions are used to implement high-level object file I/O:

Status input_graphics_file(char *filename,
File_formats *format,
int *n_objects,
object_struct ***object_list);

Status output_graphics_file(char *filename,
File_formats format,
int n_objects,
object_struct *object_list[]);

10

