
JIV : A 3D Image Data Visualization and Comparison Tool

Chris Cocosco <crisco@bic.mni.mcgill.ca>

1

1 Inputs

1.1 Environment

JIV can be run either as a Java applet, either as a (standalone) Java application.
Running it as an applet requires an HTML file to invoke it; however, this can be a very

simple file, containing only the applet tag. This applet expects a run-time parameter (in
the form of an applet parameter): the URL of a config file, which contains information
about which 3D data volumes to load, the layout of the user interface, initial settings of
various controls, and so on.

The applet can be launched by some HTML code like this:

<applet height=50 width=400 archive="jiv.jar" code="jiv/Main.class">
<param name="cfg" value="config_file">

</applet>

where jiv.jar should be the URL of the JAR file containing the JIV Java bytecode, and
config_file should be the URL of the appropriate JIV config file (config can be used
instead of cfg for the parameter name). The config file can also be supplied “inline” within
the HTML file using the inline_cfg (or inline_config) applet parameter; for example:

<applet height=50 width=400 archive="jiv.jar" code="jiv/Main.class">
<param name="inline_cfg" value=" ;

config file’s content here: ;
data1 : data1.raw_byte.gz ;
jiv.panel.0 : data1 ;
... ;
">
</applet>

Note that, unlike the separate config file, the inline config needs to have each line terminated
with the ’;’ character. Both a separate config file and an inline config can be supplied at the
same time: the inline config is read last, so its content takes precendence for keys defined
in both places.

The HTML file is not needed when JIV is not run as an applet but as a regular Java
application. In this case, the config file’s URL can be supplied as a command line argument,
or as the value of the cfg or config Java system properties (“environment variables”). The
top-level class that needs to be run is the same (jiv/Main.class).

1.2 Config File

The config file is expected to be in the following format:

• Lines are separated by ’;’ in the inline config, and by the normal ’newline’ in a config
file.

• Lines that begin with # or ! are comments and are ignored.

• Blank lines are ignored.

• All other lines should specify a key/value pair and be of any of the following three
equivalent forms:

2

key = value
key : value
key value

Leading/trailing whitespace and control characters in value are trimmed off.

• The following escape characters are also recognized and treated as follows:

– \newline : an escaped newline character is ignored, along with the spaces or
tabs that follow it.

– \n : expands to a newline character.

– \r : expands to a return character.

– \t : expands to a tab character.

– \uxxxx : expands to the Java Unicode character code specified by the hexadeci-
mal digits.

Keys which start with “jiv.” are JIV configuration options. Keys which do not start
with “jiv.” give the location of the image data files (image volumes). JIV configuration
options refer to data files by means of data volume aliases, i.e. a kind of a short name.
The alias is displayed as a title at the top of each panel, hence it’s a good idea to choose
something descriptive and short (such that it will fit in the, possibly narrow, panel).

For a given alias “myalias”, the value associated with key myalias is the volume image
file’s URL (URL-s for the individual slices are derived from the volume URL, as described
in section 1.3). The value associated with key myalias.header is the URL of the header
file associated with the image file(s). All relative URL-s are interpreted relative to the base
URL of the config file, or relative to the base URL of the HTML file launching the applet
if a config file is not defined (by means of the cfg or config applet parameters). If all
volumes have the same header, it is acceptable to specify it only for one of the volumes;
otherwise, a header should be specified for all volumes (see section 1.3 for the header file
format).

The following JIV configuration options are supported:

• jiv.sync = [true|false]
Sets the initial state of the Sync all cursors control. The default is false.

• jiv.world_coords = [true|false]
If false, only voxel coordinates will be available in the user interface (however, doing
this is not recommended practice!). The default is true.

• jiv.byte_values = [true|false]
If true, all the voxel values, including the colormap range values, are presented in the
user interface as byte values (0–255). If false, they are presented as fractional values
(0.0–1.0). The default is false.

• jiv.panel.N = alias
Specifies an individual volume panel, i.e. an interface panel displaying a single data
volume (specified by alias, which should be a data volume alias declared somewhere
else in the same config file). N should be a non-negative integer and represents this
panel’s number.

3

• jiv.panel.N.combine = alias1 alias2
Specifies an combined volume panel, i.e. an interface panel displaying a combined view
of two data volumes (specified by alias1 and alias2). N should be a non-negative
integer and represents this panel’s number. The two aliases should be separated by
one or more blanks () or tabs (\t). Also, these two aliases should be displayed in
their individual panels as well. If an alias is displayed in more than one individual
panel, then the lowest numbered such panel is used as the “source” for that volume
alias.

• jiv.panel.N.coding = [gray|grey|hotmetal|spectral|\
red|green|blue|mni_labels]
Specifies the initial color coding for panel N, which has to be an individual volume
panel.

• jiv.panel.N.range = L U
Specifies the initial lower and upper limits of the color coding range for panel N, which
has to be an individual volume panel. L and U should be fractional (float) numbers
in the range 0.0–1.0. The two should be separated by one or more blanks () or tabs
(\t).

• jiv.download = [upfront|on_demand|hybrid]
Specifies the data (down-)loading method.

In mode upfront, all of the data is loaded and stored in memory before the user can
view and interact with any of it. This guarantees the best interactive response of the
viewer, however the user has to wait for all the data to load before the JIV interface
becomes available. This mode is recommended when the data is available locally, but
is impractical for accessing remote data over a slow network.

In mode on_demand image data is loaded one slice at a time, and only if and when the
user is viewing that particular slice number. This mode is recommended for remote
access over very slow networks. It minimizes the data downloads and the amount of
memory required by JIV, but the interactive performance is completely dependent on
the network speed.

Mode hybrid combines the other two: the complete image volume is downloaded
in the background, and the slices at the cursor are downloaded with priority, as
soon as they are needed. This mode is the recommended for typical remote data
access situations; it provides the fast startup of on_demand and, after the background
downloading completes, the optimal interactive performance of upfront.

Panels are displayed left to right, sorted by their increasing number. Note that these
numbers do not have to be consecutive — “gaps” in the numbering sequence are silently
skipped. Note that the same alias (i.e. the same data volume) can be displayed in several
individual and combined volume panels.

The config file is parsed in several passes, so the order of the key/value pairs is irrelevant.
However, if several conflicting key/value definitions are given (which is bad practice, by the
way), not the last definition given but a random one of them will be considered!

4

1.3 Data Files

JIV reads 3D image data from an image file which should contain the image intensity (gray
level) data represented as unsigned bytes (8-bit). The image data are interpreted using an
associated header file, which specifies the volume sampling, world coordinates (real world
mm), and real image values. All the data files can be optionally compressed using gnuzip,
in which case their names (URL-s) need to have the .gz suffix.

The header file is a text file with the same syntax as the config file (see section 1.2).
The following statements are supported (where the 3 values of the right-hand side can be
separated by whitespace or “,”) :

• size : x_size y_size z_size
the sizes (voxel counts) of the 3D image along the x, y, and z axes respectively.

• start : x_start y_start z_start
the distance (in real world mm) from the origin to the first voxel along the x, y, and
z axes respectively.

• step : x_step y_step z_step
the signed distance (in real world mm) between the centers of consecutive voxels
along the x, y, and z axes respectively; a negative value indicates that the file scans
the volume in negative direction along that axis.

• order : (permutation of {x,y,z})
the order of dimensions in the file, i.e. the order in which the volume file scans the (3D)
data volume — e.g. “order : z y x” means that the x coordinate changes fastest
(volumes using this particular dimension ordering are also known as “transverse”).

• imagerange : range_min range_max
the linear mapping from the byte voxel values to the real image voxel values: 0 maps
to range min, 255 maps to range max.

The x, y, z axes and their positive direction are assumed to be (respectively): left to right,
posterior to anterior, and inferior to superior of a 3D medical image. Note that the sizes,
starts, and steps are always expected in x, y, z order, regardless of the file dimension order.
If any of the header information is not specified, the following defaults are used (they
correspond to the “ICBM” sampling and to the “Talairach” stereotaxic coordinates systems
used at the Montreal Neurological Institute, McGill University):

size : 181 217 181
start : -90 -126 -72
step : 1 1 1
order : z y x
imagerange : 0.0 1.0

Performance tip: Due to internal optimizations, the initial download of the image data
will be faster if all the steps are positive and equal (for all dimensions and all image volumes)
and the dimension ordering is ’z y x’. However this performance difference will be hardly
noticeable when using a modern Java runtime environment (JVM)...

There are two kinds of image files:

5

volume file: contains the complete (3D) image volume data; it is required by the upfront
and the hybrid download modes.

slice file(s): contain a 2D slice of the 3D image volume; three sets of all the slices or-
thogonal to each of the three coordinate axes are required by the on_demand and the
hybrid download modes.

The volume file URL is specified in the config file (as shown above in section 1.2); the slice
files are expected at URL-s of the form: base/orientation/slice number.extension,
where orientation is one of “01”, “02”, or “12” — the name indicates which are the
in-slice dimensions (in file dimension order) for that orientation. For example, for a “trans-
verse” volume (order: z y x) 01, 02, 12 correspond to “sagittal” (z-y), “coronal” (z-x), and
“transverse” (y-x) slice orientations.

base and extension are obtained by breaking the volume file URL at the last “.” (other
than the suffixes .gz or .bz2); for example, all of the following:

/some/dir/somename.raw_byte.gz
/some/dir/somename.raw_byte
/some/dir/somename.gz
/some/dir/somename

result in base = /some/dir/somename .
For converting MNI-MINC data to the JIV input format, two utilities (Perl scripts) are

distributed along with JIV: minc2jiv.pl, and jiv.pl.
Note: the upfront download mode requires the volume file(s), the on_demand mode

requires the slice files, and the hybrid download mode requires both the volume and the
slice files.

6

2 Graphical User Interface

The main JIV window is composed of one or more “panels” — columns of interface elements
separated by vertical lines. Each panel has a title indicating its content and type. There
are two kinds of panels:

combined data volume panel Has a title of the form “vol_name1 <-> vol_name2”, and
displays a combined view of two 3D data volumes.

individual data volume panel Has a title of the form “vol_name”, and displays a single
3D data volume.

The two data volumes that are displayed together in a combined volume panel are always
displayed in their individual panels as well.

JIV allows its main window to be resized at will (using the techniques specific to your
platform and windowing environment). However, if the window is too small (especially if
it’s too narrow for the number of displayed panels) some interface components may overlap
in a confusing way, or even become completely obscured.

2.1 Common panel features

Each panel is composed of four visible main elements, aligned in a vertical column; from
top to bottom, they are:

1. “Transverse” 2D slice viewport (Z = const).

2. “Sagittal” 2D slice viewport (X = const).

3. “Coronal” 2D slice viewport (Y = const).

4. Panel controls area.

The x, y, z axes and their positive direction are (respectively): left to right, posterior to
anterior, and inferior to superior of the head. Besides the (always visible) controls area at
the bottom of the panel, additional controls are available through a panel-specific pop-up
menu.

2.1.1 Slice viewport

Inside a 2D slice viewport, the following mouse actions are available:

primary-mouse-button Moves the cursor to a new position in slice’s plane. Can also
drag the cursor around.

secondary-mouse-button Combined with a vertical mouse movement, moves the cursor
along the axis orthogonal to slice’s plane (i.e. changes the displayed slice). The cursor
displacement is proportional to the relative vertical mouse drag movement. This
operation can also be performed using keyboard commands (see below).

Shift or Ctrl + primary-mouse-button Moves the field of view (i.e. does a pan) by
following the mouse drag movement.

7

Shift or Ctrl + secondary-mouse-button Combined with a vertical mouse movement,
changes the zoom/scaling factor. The change in the scaled image dimensions is pro-
portional to the relative vertical mouse drag movement.

double-click primary-mouse-button Marks the current cursor position as the origin
(first point) for the in-slice distance measurement. Also, it enables the distance mea-
surement mode, if necessary.

double-click secondary-mouse-button Disables the distance measurement mode.

The meaning of “primary” and “secondary” mouse buttons is provided by the Java im-
plementation used to run JIV, and is platform-dependent — e.g. on a Unix/X-Windows
platform, with the common right-handed mouse configuration, primary is the left button,
and secondary is either of the middle or right mouse buttons. On all platforms, the sec-
ondary button can be emulated by pressing the Meta or Alt key together with the primary
button.

The following keys can be used for changing the displayed slice – that is, moving the
cursor along the coordinate axis orthogonal to slice’s plane by an amount of 1mm (one
voxel):

• Right(→), Up(↑), or + : positive increment (next slice).

• Left(←), Down(↓), or - : negative increment (previous slice).

The in-slice distance measurement feature interactively displays the world-coordinates
distance between the origin (“marked point”) and the current cursor position. The value
is always given in real world units (mm). The measurement origin is preserved across slice
changes, same as the current in-slice cursor position is. The following keys can also be used
for controlling this measurement feature:

• d : same as double-click primary-mouse-button (see above).

• c : same as double-click secondary-mouse-button (see above).

The image scaling (i.e. zoom-up/down) is done using nearest-neighbour interpolation:
pixels are replicated (for enlargements) or skipped (for reductions) as needed.

When the viewport dimensions change (as a consequence of the main window being
resized), JIV will adjust the field of view such that it’s not less than the previous field of
view, while at the same time using as much of possible of the new viewport area.

2.1.2 Controls area

The controls area of each panel has, at the top, a group of three text fields that display the
current X,Y, Z coordinates of the cursor in that panel. These fields also allow editing (text
input) – the usual text editing commands of your platform should work. If a value out of
range is given, the field will revert to its previous (valid) value. The coordinates displayed
(and read in) are voxel or world coordinates, depending on the current panel setting.

Any horizontal sliders present in this area are implemented using platform-specific scroll-
bars, thus their behaviour in response to mouse (and maybe keyboard) actions should be
similar to the other scrollbars on your computer platform (and/or windowing system).

8

2.1.3 Pop-up menu

The mouse and/or keyboard command that brings up the pop-up menu is the usual one for
triggering context-sensitive (pop-up) menus on your particular computer platform — e.g.
on Unix and on Microsoft Windows, it’s usually the right (second or third) mouse button.

The following menu actions are available in all panels:

• Coordinates type [choice] : Changes the type of coordinates that are displayed, and
read in, in the controls area at the bottom.

• Sync all cursors [toggle] : If on, the cursor positions in all panels will be kept the
same. When changing this control from off to on, all cursors will be set to the cursor
position of the first panel (from the left).

• Help [menu]: Provides access to the JIV version and copyright info (the About com-
mand), and to this help document (the Help command). If JIV is running as an applet
in a web browser, the online help file should be opened in a new browser window1.
The online help is not available if JIV is running as a standalone application.

• Quit : Closes the JIV window and exists the application. However, when running
JIV using a web browser or an appletviewer, this action is probably not enough; in
order to completely dispose of this running copy of the JIV applet you may have to
move out of the HTML document that launched it, or maybe even close that browser
frame/window. To make things worse, some web browsers don’t release the (possibly
large amount of) memory formerly used by the applet unless you completely shutdown
the browser!

2.2 Individual volume panel features

The 8-bit intensity values in the data volume are displayed in the viewports using a user-
controlled colormap. This is composed of a certain color-coding scheme (in between ad-
justable lower and upper limits), an “under” color (below the lower color-coding limit) and
an “over” color (above the upper color-coding limit).

2.2.1 Controls area

To the left of the three coordinate fields, there’s a read-only text field displaying the voxel
(intensity) value at the cursor position.

Below the coordinate text fields, there are controls for the lower color-coding limit (left
text display/entry field and lower slider) and for the upper color-coding limit (right text
display/entry field and upper slider). The lower limit can never be higher than the upper
limit.

The values displayed (or read in) by the voxel intensity and lower/upper color-coding
limit text fields can be a fractional ones (in the range 0.0–1.0) or byte values (in the range
0–255), depending on how this instance of JIV was configured.

The current colormap is displayed as a color bar at the very bottom of the panel.
1provided this file is available as doc/help/index.html relative to the applet’s code-base or document-

base.

9

2.2.2 Pop-up menu

The following menu actions are available in the individual volume panels only:

• Color coding [choice] : Changes the color-coding scheme.

• "Under" color [choice] : Changes the “under” color ((default) means the same
color as the one at color-coding’s lower limit).

• "Over" color [choice] : Changes the “over” color ((default) means the same color
as the one at color-coding’s upper limit).

• Tie colormap sliders [toggle] : If on, the two color-coding limits behave like being
connected together by a solid rod — adjusting one value implies changing the other
one such that their difference (“distance”) remains the same.

2.3 Combined volume panel features

The coloring of each of the two data volumes is the one from the individual volume panel
representing that data volume. If a data volume (i.e. a volume alias) is displayed by more
individual volume panels, then the left-most such panel is used as the coloring source for
that data volume.

Currently, the only method available for combining (“compositing”) the two data vol-
umes is blended: the color of each pixel of the combined image is given by

color in volume 1× (1− β) + color in volume 2× β

where β is the blend factor: a fractional value in the range 0.0–1.0 (this compositing is done
in RGB color space).

2.3.1 Controls area

Below the coordinate text fields, there is a blend factor (β) slider, surrounded by two text
display/entry fields: the left one for 1 − β, and the right one for β. In other words, these
two text fields contain the weighting factors for the two combined data volumes.

10

