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A new paradigm for the characterization of struc-
ture appearance is proposed, based on a combination
of gray-level MRI intensity data and a shape descrip-
tor derived from a priori principal components anal-
ysis of 3D deformation vector fields. Generated with-
out external intervention, it extends into 3D more
classic, 2D manual landmark-based shape models. Ap-
plication of this novel concept led to a method for the
segmentation of medial temporal lobe structures from
brain magnetic resonance images. The strategy em-
ployed for segmentation aims at synthesizing, using
the appearance model, a deformation field that maps a
new volume onto a reference target. Any information
defined on the reference can then be propagated back
on the new volume instance, thereby achieving seg-
mentation. The proposed method was tested on a data
set of 80 normal subjects and compared against man-
ual segmentation as well as automated segmentation
results from ANIMAL, a nonlinear registration and
segmentation technique. Experimental results demon-
strated the robustness and flexibility of the new
method. Segmentation accuracy, measured by overlap
statistics, is marginally lower (< 2%) than ANIMAL,
while processing time is six times faster. Finally, the
applicability of this concept toward shape deforma-
tion analysis is presented. © 2002 Elsevier Science (USA)

1. INTRODUCTION

Brain structures like the hippocampus (HC) and the
amygdala (AG), located in the medial temporal lobe
(MTL), have received a lot of attention due to their
importance in neurological diseases and disorders. For
example, clinical consensus is now clear on the impli-
cation of the HC and the AG in temporal lobe epilepsy,
and study of these structures (and others in the MTL)
cannot but help in understanding other forms of epi-
leptic activity. Current approaches in the study of MTL
structures are heavily reliant on in vivo imaging tech-
niques such as magnetic resonance imaging (MRI). Its
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high contrast and spatial resolution allow morpholog-
ical studies of MTL structures by extracting their po-
sitions, shapes, volumes, and other properties from the
information contained in the images.

The work presented in this article is concerned with
the segmentation of 3D brain structures, such as those
found in the MTL, from MR images. Manual segmen-
tation, as shown in Fig. 1, is considered highly accu-
rate, but subject to intra/inter-observer variability, es-
pecially in the absence of a thorough segmentation
protocol. It is also obvious for researchers that this is a
time-consuming endeavor. Available automatic seg-
mentation techniques include ANIMAL (Automatic
Nonlinear Image Matching and Anatomical Labeling),
a registration and segmentation tool based on image
intensity features, and developed at the Montréal Neu-
rological Institute (MNI) by Collins et al. (1995). While
the segmentation accuracy of ANIMAL is comparable
to that of expert manual segmentation, there is no
statistical information embedded in the process, mak-
ing each application of the segmentation task a com-
pletely new one from the system’s point of view. Fur-
ther, one must use an iterative multiscale approach
leading to a segmentation time of around 2 h for the
MTL region, which is not practical for many tasks and
studies. Since the inception of ANIMAL, simple models
have been developed elsewhere that could be inte-
grated in some fashion to enhance the capabilities of an
intensity-based technique without “memory” or prior
knowledge of the structure of interest. For example,
shape descriptors such as the point distribution models
(PDMs) of Cootes et al. (1993) are now being used
extensively in a number of applications, including seg-
mentation in medical images (Kelemen et al., 1999).
There exist a few hybrid systems that combine inten-
sity and shape data into a description of the appear-
ance of an object, one of which has been successfully
applied to medical imaging segmentation tasks (Cootes
et al., 1998).

The original motivation of the work described in this
article was to develop a new segmentation method,
embedding the paradigm of statistically relevant a pri-
ori information, that could achieve or surpass the ac-
curacy of ANIMAL while possibly reducing computa-
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tional costs (Fig. 11). The reader is first invited to read
an overview of applicable segmentation strategies
forming the necessary background for this work. Draw-

ing on these models, an appearance-based method in-
corporating analysis of dense deformation fields is in-
troduced and rigorously developed. The main

FIG. 1. Example of T1 MR image with manually labeled HC (blue, green, red) and AG (yellow). Image courtesy N. Bernasconi, BIC, MNI.

FIG. 2. Processing pipeline. All MRI data are processed through the pipeline shown. After preprocessing to correct for intensity
nonuniformity, the data are linearly registered into stereotaxic space and resampled onto a 1-mm isotropic grid. Nonlinear transformation
to stereotaxic space is used to produce 3D dense deformation fields for PCA analysis and construction of the WDM.
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contribution of this work is the extension of 2D appear-
ance-based techniques into three dimensions by in-
cluding nonlinear registration vector fields into a 3D
Warp Distribution Model. The image matching and
segmentation strategy to be employed by the new tech-
nique is presented in the same section. The perfor-
mance of the appearance-based method is character-
ized through a series of experiments. The accuracy of
the segmentation method is evaluated against manual
segmentation results from an expert neuroanatomist,
and also compared with results from ANIMAL using
the same input data. A discussion of experimental re-
sults and properties of the technique is followed by
some general observations on this current work and
ideas for future research.

2. BACKGROUND

Segmentation of the HC/AG on MR images has been
approached in a number of ways. While a complete
review of segmentation techniques is beyond the scope
of this article, this section endeavors to describe those
that have been applied to the MTL.

2.1. Manual Segmentation

Manual segmentation techniques involve contour de-
lineation of MTL structures by one or more trained
neuroanatomists. While expert human intervention re-
mains the most accurate segmentation technique, se-
rious drawbacks undermine its usefulness in a number
of situations.

The main difficulty resides in the subjective inter-
pretation of anatomic variations (Hogan et al., 2000).
In the case of HC and AG, for example, differences in
border definitions among research groups—and for
that matter, among investigators of the same group—
have hindered the comparison of results (Pruessner et
al., 2000). Commonality in the definition of segmenta-
tion protocols is needed if results are to be compared.

Second, research groups use different software pack-
ages to trace the targeted structure. Most employ 2D
visualization tools for brain images, without the possi-
bility of adjusting resolution or image contrast. A com-
mon 2D error is interslice misregistration, which leads
to nonsmooth 3D surfaces (Hogan et al., 2000). On the
other hand, scalable 3D imaging is available in some
centers, allowing for precise display and enlargement
of regions of interest in coronal, sagittal, and trans-
verse orientations (Pruessner et al., 2001).

Finally, this process is obviously lengthy, as the spe-
cialist must delineate the structures on a slice-by-slice
basis. Taking the HC as an example, its longest axis of
4–5 cm generates on the order of 40–50 slices with
isotropic 1-mm3 voxels. Hogan et al. (2000) report a
total segmentation time of 2 h per HC. This result has
been corroborated locally by one of the authors (J.C.P.)
for his own research.

These drawbacks motivated Pruessner et al. (2001)
to conduct a manual segmentation study which has
been retained in this work as the gold standard for HC
and AG segmentation. Following a thorough literature
review, Pruessner et al. developed a protocol for con-
tour tracing using high-resolution, uniform, and stan-
dardized T1-weighted MR images with 1-mm isotropic
voxels. He used a 3D analysis software called DIS-
PLAY, developed at the Montreal Neurological Insti-
tute, which allows simultaneous display of coronal,
transverse, and sagittal images for visualization and
segmentation. The results indicate that with 3D visu-
alization, the irregularly shaped HC and AG can be
reliably and precisely segmented. The reported intra-
class interrater overlap coefficients are in the range
� � 0.83–0.94, which indicates very good accord be-
tween raters (see Section 3 for a mathematical descrip-
tion of the overlap coefficient �). Regarding the relative
volumes of the targeted structures, comparison of left
and right HC and AG volumes in normal controls re-
vealed a significantly larger right HC volume and no
differences in the AG volume.

2.2. Automated Segmentation Techniques

To discuss some of the many segmentation tech-
niques that have been developed for purposes related
to brain imaging, we introduce a simple classification
scheme based on two design features:

● Segmentation paradigm: The prevalent paradigm
is one of forward segmentation, where a predefined
template is made to match the new volume to achieve
segmentation. In most cases experts are required to
initialize the segmentation process by choosing land-
marks. The matching process can be done in the way of
an initial contour which will be propagated through
some form of elastic matching onto the image until a
proximity criterion is maximized. An example of this
technique is the high-dimensional brain mapping tech-
nique using fluid transformations, proposed by Chris-
tensen et al. (1997). Other techniques, such as the
active shape model (ASM) of Cootes and Taylor et al.
(2000), relies on the placement of landmarks on the
image to derive a model that is then globally deformed
to match some intensity features of the new image.
Backward segmentation, on the other end, can be
thought as a reversion of the original paradigm. In
those cases the new image is registered through vari-
ous means onto a reference volume; segmentation in-
formation that had been previously obtained for this
volume can be propagated back onto the new subject,
using the inverse transformation matrix. This para-
digm can be observed in Thirion’s demons (1996) and
Collins and co-workers’ (1995) ANIMAL algorithms.

● Generic or model-based: Modeling is used to con-
strain the solution space while making the convergence
process more efficient. At the same time, the frame-
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work should be flexible enough to allow instant retrain-
ing on a new area of research, without expensive mod-
ifications or user intervention. The ASM of Cootes and
Taylor (2000) is a model-based approach but with lim-
ited flexibility; it requires extensive user intervention
for retraining. Nonmodeled approaches, such as de-
mons and ANIMAL, while avoiding most of the prob-
lems associated with landmarks, lack any form of pre-
dictability arising from statistical analysis of priors.
This versatility can be seen as a strength or a weak-
ness.

While many other segmentation techniques exist, it
is outside the scope of this article offer a comprehen-
sive review of this field. The reader is thus referred to
Pham et al. (2000) as well as to Clarke et al. (1995). The
following review concentrates on a small number of
selected techniques, with emphasis being placed on
ANIMAL and the active shape model of Cootes and
Taylor due to their relevance in the design of the ap-
pearance-based segmentation technique being pro-
posed in this article.

2.3. ANIMAL

This approach, introduced by Collins et al. (1995),
depends on a general, iterative, hierarchical nonlinear
registration procedure and a 3D digital model of hu-
man brain anatomy that contains both volumetric in-
tensity-based data and a geometric atlas. The key ele-
ment in ANIMAL is its inversion of the common
segmentation paradigm (Collins et al., 1995), which we
labeled backward segmentation earlier. Instead of
matching geometric contours from an idealized atlas
directly onto the MRI data, segmentation is achieved
by identifying the nonlinear spatial transformation
that best maps corresponding intensity-based features
between the new MRI data and a model image/volume.
When completed, atlas contours defined a priori on the
model image are mapped by applying the inverse
transformation, thereby effectively segmenting and la-
beling individual structures in the new data set.

The method comprises three steps (Collins et al.,
1995). First, geometrically invariant image features
are extracted, for example, blurred image intensity and
image gradient magnitude. Next, a linear registration
is performed automatically by estimating the best af-
fine transformation matrix that maximizes the corre-
lation of the invariant features from both target and
source volumes. The final step is a nonlinear registra-
tion process, where local deformations are applied to
the source volume to improve the alignment of specific
regions. The deformations are estimated with a hier-
archical multiscale, multiresolution strategy. At each
step in scale space, the goal of the optimization proce-
dure is to identify the nonlinear transformation that
maximizes the similarity between features derived
from the voxels in the two data sets. The concatenation

of linear and nonlinear transform yields a global trans-
formation, able to warp the source volume in its native
space directly onto the target volume, usually defined
in a stereotaxic space (but not necessarily, since any
volume can be a target volume).

Segmentation is achieved by applying the inverse
global transformation on any model defined on the
target image. Using manually segmented structure
boundaries for comparison, measures of volumetric dif-
ference and volumetric overlap were less than 10% and
better than 85% (Collins et al., 1995), respectively.

2.4. High-Dimensional Brain Mapping

The work of Christensen et al. (1997) focused on the
development of a segmentation method based on a
local, fluid registration technique. Clinical work on the
HC for epilepsy by Haller et al. (1996) and on the HC
for schizophrenia by Csernansky et al. (1998, 2000) are
quite demonstrative of the applicability of such a
method. The entire automated process, including land-
mark identification and coarse and fine (fluid) trans-
formations, takes approximately 2 h on a massively
parallel supercomputer (Haller et al., 1996).

2.5. Demons

Webb et al. (1999) used the Thirion (1996) method to
identify significant atrophy in the left or right hip-
pocampus of patients with clinical evidence of temporal
lobe epilepsy (TLE). It is an intensity-based segmenta-
tion technique based on a registration method using
the so-called demons algorithm. For small deforma-
tions the approach is similar to an optical flow tech-
nique (Thirion, 1996).

2.6. Medial Models

A new technique for segmentation based on medial
models is emerging in the literature and has been
presented recently by Joshi et al. (2001) and Pizer et al.
(2001). Styner et al. (2001) have used those models to
segment the HC. The paradigm is based on a shape
representation by spherical harmonics and a coarse-
scale sampled medial description. While HC segmen-
tation is presented as an application of this technique,
no overlap statistics from implementation data were
given.

2.7. Active Shape Model (ASM)

The landmark-based active shape model approach
suggested by Cootes et al. (1995), based on the point
distribution model (PDM) (Cootes et al., 1993), formed
the basis for many other landmark-based variants that
were used in the segmentation of structures from MR
images. Most notably for MTL structures, the idea
proposed by Kelemen et al. (1999) closely followed the
seminal work of Cootes et al. on ASMs, but was based
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on a hierarchical parametric object description rather
than a PDM. The segmentation system included both
the building of statistical models and the automatic
segmentation of new image data sets via a restricted
elastic deformation of shape models. The technique has
been applied to automatically segment left and right
HC, thalamus, putamen, and globus pallidus from
volumetric MR scans taken from schizophrenia stud-
ies. No overlap statistics were given.

The aim of the PDM is to build a model of the shape
of the structure of interest that describes both typical
shape and typical variability using previous examples
from a training set (Cootes et al., 1995). In the PDM,
shapes are represented by a set of points or landmarks
that are manually placed on each image. The labeling
of the points is important. Each labeled point repre-
sents a particular part of the object or its boundary.
The method works by modeling how different labeled
points tend to move together as the shape varies. If the
labeling is incorrect, the method will fail to capture
shape variability reliably. If a point is not in the correct
position on each shape, the model will be unable to
precisely represent the position of that point. The
model includes terms describing the noise caused by
errors in point location. Points are manually identified
during the training phase. Landmarks for a given
shape do not move about independently; their positions
are partially correlated.

2.8. Active Appearance Model (AAM)

In the ASM, matching of the resulting PDM model
occurs as control points are moved in normals to the
boundary, trying to match intensity profiles with those
of the image. The allowed modes of variation for the
control points are those resulting from landmark posi-
tional modeling. Intensity, in this model, is used as a
constraint, rather than a property of the structure of
interest. The AAM was introduced by Cootes et al.,
(1998) in part to further their original method and
make more use of the intensity information in the
images. Their goal in developing the AAM was to
match a full, photorealistic model directly on a new
image instance by minimizing the difference between
the image under interpretation and one synthesized by
the model.

Knowledge about the shape is incorporated into the
AAM via a PDM. The intensity under the landmarks in
the PDM is sampled and used to generate a gray-level
model. The two models—gray-level and PDM—are
concatenated, and a supermodel is created from prin-
cipal components analysis (PCA) or Karhunen–Loeve
expansion of the covariance matrix. The resulting prin-
cipal components that explain the most variation in the
supermodel are then selected. Those principal compo-
nents can be considered as eigenmodes of appearance
variation, embedding shape and intensity variability.

It is possible afterward to generate a new image
instance each time the shape is deformed along those
principal modes of variation. It is this synthesized im-
age that is matched to the original image. Shapes are
thus modified to reduce a cost function, in the least-
squares sense, between the synthesized and original
images, rather than moving the shape points on an
imaginary normal to the boundary. The process be-
comes more robust since it matches known gray-level
values within contiguous neighborhoods rather than
possibly erroneous samples along a profile that may be
offset by other factors, such as misregistration or er-
rors in landmark placements.

In a publication (Cootes et al., 1998), and especially a
technical report (Cootes and Taylor, 2000), a direct
optimization approach is presented, which leads to a
rapid, accurate, and robust matching algorithm. In
their proposed method, they do not attempt to solve a
general optimization when a model is tried to fit to a
new image. Instead the fact that the optimization prob-
lem is similar each time is exploited by performing
training off-line. This allows the finding of directions of
rapid convergence, even though the search space has
very high dimensionality (Cootes and Taylor, 2000).

No applications of this method toward MTL segmen-
tation has been found in the literature to date.

3. METHODS

The technique presented in this article could be con-
sidered at first glance as a variation of the active ap-
pearance model. The AAM was selected as a basis since
it takes into account not only the shape of the structure
of interest (SOI), but also its gray-level appearance.
However, central to the AAM is the shape-descriptive
PDM which, while being sufficient for a number of
applications, cannot be used in the context of this work.
In effect, PDMs have to make use of neuroanatomical
expertise each time a new SOI needs to be segmented,
a situation that is to be avoided. In this resides the
novelty of the proposed approach: a nonsupervised,
completely 3D means of characterizing shape.

In lieu of the PDM, it is proposed that a warp distri-
bution model (WDM), which forms the main contribu-
tion of this work, be used. Based on a statistical anal-
ysis of dense 3D deformation fields, this model is able
to effectively characterize shape, while at the same
time making use of all voxels within an image and thus
avoid subsampling. The following sections introduce
the mathematical foundation of the WDM and its in-
clusion in the more generalized frame of the appear-
ance-based (AB) method. Rueckert et al. (2001) has
proposed a way to create a landmark model of the brain
that follows many of the same lines as proposed here,
but has not proposed an application in segmentation.

The reader will note that some of this work was first
presented by the authors as preliminary works in
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progress (Duchesne and Collins, 2001; Duchesne et al.,
2001).

3.1. Warp Appearance Model

To simplify the following derivations, the same no-
tation as that of Cootes et al. (1998) is used.

The choice of shape representation in the WDM cen-
ters on 3D deformation fields from ANIMAL (Collins et
al., 1995). These deformation fields consist of volumes
of vectors in 3D mapping source image voxels to target
image voxels of similar intensity in the nearest-neigh-
bor sense, and which can be considered equivalent (in
terms of shape deformation information) to manual
landmarks, albeit of each volume element. To simplify
computations, the 3D deformation vector fields or
warps are decomposed into volumes of orthogonal de-
formation components x, y, z.

Each warp in the deformation training set can be
represented by a single point in a 3n dimensional space
(3n-D), where n is the number of voxels in each warp
volume, and for each voxel there exist three orthogonal
deformation magnitude components. Thus a set of N
example warps gives a cloud of N points in this 3n
dimensional space. It is assumed that these points lie
within some region of the space, which is called the
“allowable warp domain” (AWD, similar to the ASD of
Cootes et al. (1995)), and that the points give an indi-
cation of the shape and size of this region. Every point
within this 3n-D domain gives a warp whose shape is
broadly similar to that of those in the original training
set. Thus by moving about within the AWD, new warp
instances can be generated in a systematic way.

The following mathematical reasoning is aimed at
constructing independent linear models for each or-
thogonal warp component magnitude x, y, z. As such, it
is given in its general form.

Given a set of N warp component magnitude exam-
ples, the mean warp component s� is calculated using

s� �
1

N �
i�1

N

si, (1)

where si is the column vector of warp component for a
given warp field instance i, of dimension n. The prin-
cipal axes of an ellipsoid fitted to the data can be
calculated by applying PCA to the data. Each principal
component axis yields a direction of a mode of varia-
tion, a way in which the warp components tend to move
together as the warp field varies. It can also be consid-
ered as a new orthonormal basis, optimally constructed
for description of the space being studied.

For each warp field instance in the training set, the
deviation from the mean warp component dsi is calcu-
lated, where

dsi � si � s� . (2)

To find the basis for this space, the n � n covariance
matrix, S, has to be calculated using

S �
1

N �
i�1

N

dsidsi
T. (3)

The principal axes of the hyperellipsoid, giving the
modes of variation of the warp component, are de-
scribed by pk (k � 1, 2, . . . n), the unit eigenvectors of
S such that:

Spk � �kpk (4)

(where �k is the kth eigenvalue of S, �k � �k�1).
The assumption is made that the shape of this cloud

in a high-dimensional space is approximately ellipsoi-
dal (Cootes et al., 1995). Finding the center and the
major axes of the ellipsoid yields a way to move around
in the cloud, and hence to approximate new example
warp components permitted by the model.

It can be shown that the eigenvectors of the covari-
ance matrix corresponding to the largest eigenvalues
describe the longest axes of the ellipsoid, and thus the
most significant modes of variation in the variables
used to derive the covariance matrix (Cootes et al.,
1995). Most of the variation can usually be explained

FIG. 3. (A) Medial slice through HC atlas. (B) HC atlas superimposed on average VOI.
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by a small number of modes, t, where t �� n. This
means that the n-dimensional ellipsoid is approxi-
mated by a t-dimensional ellipsoid, where t is chosen so
that the original ellipsoid has a relatively small width
along axes with indexes t � 1 and greater (Cootes et al.,
1995). One method for calculating t is to choose the
smallest number of modes such that the sum of their
variances explains a sufficiently large proportion of �T,
the total variance of all the variables, where

�T � �
k�1

3n

�k. (5)

To know the variance of each eigenvector, or how
each principal direction contributes in the description
of the total variance of the system, the ratio of relative
importance of the eigenvalue �k associated with the
eigenvector k is used,

rk �
�k

�j�1
p �j

, (6)

where rk is the percentage relative importance for eig-
envalue �k, over the sum of all �, and p is the total
number of eigenvectors. Incidentally, p � N � 1 for the
PCA implementation being used in this work, adapted
from Beyrouti (1999) and similar to that described in
Appendix A of Cootes and Taylor’s (2000) technical
report. This algorithm reduces the dimensionality of
the matrices to be estimated and hence ensures that
substantial changes in VOI size can be easily accom-
modated.

Setting a percentage f%, one wants the smallest t
eigenvectors such that the following condition is satis-
fied:

r1 � r2 � . . . � rt �
f

100
. (7)

Any point s in the reduced ellipsoidal space can be
reached by taking the mean warp component and a
weighted sum of the deviations obtained from the first
t modes,

FIG. 4. Subject 336: Sagittal views through the medial axis of the left and right VOI.

FIG. 5. Comparison of gray-level eigenvectors. (A) Individual eigenvector weights. (B) Eigenvector weights sum by training set. Results
are identical for all three training sets, as is immediately apparent from the overlap of symbols.
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s � s� � PBs, (8)

where P � (p1p2 . . . pt) is the matrix of the first t
eigenvectors, and Bs � (b1b2 . . . bt)

T is a vector of
weights. The above equations allow us to generate new
examples of the warp component by varying the pa-
rameters (bk) within suitable limits (e.g., three stan-
dard deviations around the mean), so the new warp
component will be similar to those in the training set.

Thus in this fashion the linear warp variation mod-
els are constructed for each orthogonal direction:

x�x� � PxBx, (9)

y�y� � PyBy, (10)

z�z� � PzBz. (11)

These linear models allow any new warp instance
w(x, y, z) to be approximated by the mean warp w� and
a weighted sum of the deviations obtained from the
first t modes for each model, composed of Pw, the set of
orthogonal modes of warp variations, and Bw, the set of
warp parameters. Each mode of variation is linearly
independent from others within the same x, y, z model,
while nonlinearities may remain. Additionally, the
possibility of covariance between directions is not ex-
cluded, but does not bear on the outcome of the tech-
nique being developed.

Mathematical reasoning similar to that above allows
for the modeling of gray-level intensity. A linear model
is constructed by applying PCA to the normalized gray-
level data of N example volumes in the training set:

g�g� � PgBg, (12)

FIG. 6. Comparison of x-model eigenvectors. (A) Individual eigenvector weights. (B) Eigenvector weights sum by training set. Agreement
between training sets is very good.

FIG. 7. Comparison of warp eigenvectors for Training Set 1. Left: Individual eigenvector weights for all three deformation axes x, y, z.
Right: Eigenvector weights sum for all three deformation axes. Agreement between deformation directions is very good.
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where g� is the mean normalized gray-level vector, Pg

is a set of orthogonal modes of variation, and Bg is a set
of gray-level parameters.

One will note that pose correction, as mentioned in
Cootes and Taylor (2000), is unnecessary because all
training set images are brought into a common refer-
ence space using rigid transformations. Similarly,
global intensity parameters are accounted for in the
normalization process performed before training. Both
preprocessing steps are discussed in more detail in
Section 3.3.

There may be correlations between the gray-level
and warp variations that one wants to capture, and
hence gray-level and warp parameters Bg and Bx,y,z are
concatenated in a common matrix B:

B��
WgBg

Bx
By
Bz

� , (13)

where Wg is a diagonal matrix of weights accounting
for differences in dimensions between gray level (in-
tensity) and warp variations (distances). The weights

were based on the ratio R of standard deviation varia-
tion in each model:

W � RI

R � ���� x
2 � �� y

2 � �� z
2� 1/2

�� gray

(14)

where I is the identity matrix, and �gray,x,y,z the standard
deviations of the gray and warp models described
above. PCA of the concatenated matrix B (Eq. 13)
yields a superset of parameters describing the com-
plete appearance model;

B � QC, (15)

where Q are appearance eigenvectors and C is a vector
of parameters controlling both the warp and the gray
levels of the model.

3.2. AB Model Segmentation

Having built a model of the appearance of a training
set of images and their associated deformation fields,

FIG. 8. Rows 1 through 3 show variations around the mean VOI from �2 to �2� for PCs 1, 2, and 3, respectively. Some variations are
readily observable, for example, the HC tail/horn of lateral ventricle boundary in PC1.

FIG. 9. Synthesized image (left) of the left VOI of subject 321 generated by the AB model and difference image (right) between the real
input and the synthesized image. This difference image is in effect the residual that cannot be matched by the AB model.
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the problem remains the same as before, albeit closer
to a solution: How can one segment structures using
such a model? The AB segmentation algorithm being
proposed here has been inspired by the AAM segmen-

tation method presented by Cootes et al. (1998; Cootes
and Taylor, 2000).

The AB model seeks to minimize the difference be-
tween a new image and one synthesized by the appear-

FIG. 10. Best and worst AB segmentation examples from Training Set I: Left: Subject 336—right hippocampus (� � 75.8). Right: Subject
347—right hippocampus (� � 63.7). Segmentation using the AB model in light gray, superimposed on manually segmented left hippocampus
in dark gray. Structure overlap is displayed in black. Note that in both cases white matter folds were properly segmented.

FIG. 11. Three-dimensional segmented left hippocampus (green) from subject 341 shown superimposed on a false color T1 MR image.
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ance model. Given a set of model parameters, a hypoth-
esis for the warp and texture of a model instance can be
generated. The difference between the synthesized tex-
ture and that of the image is computed; the goal is to
minimize the magnitude of this difference. Like Cootes
et al. (1998), we observed that the pattern in the dif-
ference vector is related to the error in the model
parameters. This means that the system can learn how
to solve the problem off-line.

The first step in this approach consists of building a
linear relationship between variations in appearance
parameters and gray-level synthesized images. Defin-
ing 	V as the difference vector between Vi, the vector of
gray-level values in the image, and Vm, the vector of
gray-level values from the synthesized image,

	V � Vi � Vm, (16)

a linear model was constructed between 	V and the
error in the model parameters 	C,

	C � A	V, (17)

where A is the matrix of linear coefficients found for
each voxel. To derive such coefficients, a multivariate
linear regression is run on a sample of known model
displacements. To generate such displacement a frac-
tion of the standard deviation of superparameters
found in B (Eq. 15) is calculated for each element of Vm

and the resulting error is taken as E � norm(V). A
more thorough discussion of this approach can be
found in Cootes et al. (1998).

The second step in segmenting with the appearance
model is to use an iterative algorithm to generate new
estimates of the synthesized image Vm that gradually
approximated the new image. Varying model parame-
ters C along each vector of A, the algorithm finds the
closest match in the least-squares sense by minimizing
the magnitude of the difference vector, � � 		V	2.

By varying the parameters C for each eigenvector,
using the linear coefficients of matrix A, new synthe-
sized image instances can be created and thus a match-
ing error (in the least-squares sense) can be calculated.
Plotting the error as a function of increment, where the
range of incrementation is also expressed as a fraction
of standard deviation, the closest matching point is
found by finding the minimum of a second-order fit to
the error matching function.

After convergence, the solution explicitly contains
warp variation parameters (Eq. 15), which can be ex-
pressed back into x, y, z components of the warp field
and concatenated into ANIMAL vector format. Seg-
mentation of the VOI is then possible using any struc-
ture model defined on the ANIMAL reference volume.
It is achieved by applying the inverse of the deforma-

tion field to structures defined in the standard volume
and then mapping those onto the subject.

Many such structure models exist already at the
MNI compatible with the ANIMAL format. Hence, they
render possible the automated, nonsupervised segmen-
tation not only within the MTL, but also of different
structures of the brain by simply retraining the AB
model on another VOI.

3.3. MRI Preprocessing

A number of processing steps are required before
training volumes are incorporated into the models, and
before any new volume can be segmented. Preprocess-
ing steps include

● image intensity nonuniformity correction (Sled et
al., 1998);

● linear registration (ANIMAL in linear mode (Col-
lins et al., 1994)) and resampling into stereotaxic
space;

● delineation of the VOI (see Section 4.4);
● intensity normalization with respect to a common

volume of reference (see Section 4.4)

Of course, for the construction of the warp models,
all subjects in the training set had to be nonlinear
registered (ANIMAL in nonlinear mode (Collins and
Evans (1997)) with respect to a common volume of
reference (see Section 4.4).

These steps have been combined in a processing
pipeline presented schematically in Fig. 2 which rep-
resents the steps undertaken to segment a new volume
instance.

4. EXPERIMENTS

Three experiments have been designed to assess, in
a quantitative manner, the accuracy and robustness of
the AB segmentation method under a variety of condi-
tions, for which the results are presented here. De-
pending on the experiment, different training set/vali-
dation set pairs were used, as follows:

● Training Set 1: first 70 subjects of group of 80
● Training Set 2: last 70 subjects of group of 80
● Training Set 3: first and last 35 subjects of group of

80

Validation sets (for segmentation) were implicitly
defined as the remaining 10 subjects of the group of 80
that were not part of the training set.

4.1. AB Segmentation

The first experiment aimed at segmenting the struc-
tures of interest (SOIs), the hippocampus and the
amygdala, from validation subjects. In this experi-
ment, Training Set 1 was used to train the model,
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which was then used to segment the left and right
VOIs of subjects in Validation Set 1. The threshold (Eq.
7) for eigenvector retention in the model training was
set at 97.5%. � statistics was used to assess the overlap
with the manual structures taken from the Pruessner
et al. (2001) study.

4.2. ANIMAL Segmentation

In the interest of thorough validation, the AB seg-
mentation method was compared with another auto-
mated technique. The ANIMAL segmentation method
described earlier (see Section 2.3) was a logical choice,
being the primary technique used at the MNI and also
the parent of the current method. Experiment 2 con-
sisted of the segmentation of the same validation sub-
jects as those of Experiment 1.

4.3. AB Robustness Analysis

Experiment 3 was designed and performed to quan-
titatively assess the robustness of the AB segmenta-
tion method. The aim was to determine if, for different
input training sets, the validation results would be
consistent, all other conditions being the same. The
degree of variance was not expected to change appre-
ciably since there is a commonality of at least 50 sub-
jects for each of the training sets, and hence eigenvec-
tors from different training sets should not be
appreciably different. Experiment 3 consisted of two
additional model trainings and segmentations, and
comparison of these results with those of Experiment
1. A global measure of accuracy for AB segmentation
can be found by averaging results of Experiments 1
and 3.

4.4. Choice of Reference and Determination of the VOI

In the standard application of ANIMAL, the target is
an MRI volume from a single subject where all of the
voxels within the volume have been anatomically la-
beled by a neuroanatomist to form an atlas (e.g., Col-
lins et al., 1998). In the paradigm described here, the
target is a voxel-by-voxel intensity average of 152 MRI
volumes of young normal normal subjects (86 male, 66
female, age 24.6 
 4.8). These data were acquired as
part of the International Consortium for Brain Map-
ping (ICBM) project, a Human Brain Mapping-funded
research project with the goal of building a probabilis-
tic atlas of human neuroanatomy (Mazziotta et al.,
1995). Each volume was automatically registered and
resampled in stereotaxic space using ANIMAL in lin-
ear mode (Collins et al., 1994). The resulting MRI in-
tensity average was termed ICBM 152 Symmetrical
Average.

Delineation of the volume of interest for both hemi-
spheres was done with the help of an expert anatomist.
The extent of the VOI was selected to ensure that the

MTL would be included in the VOI regardless of indi-
vidual anatomical variations. The resulting VOI for
this work consisted of 80 � 70 � 52 voxels.

4.5. Evaluation and Validation

To assess the accuracy and robustness of the AB
technique in a quantitative manner, a gold standard
with which to compare results was necessary. The one
retained for this thesis was manual segmentation. The
manual labels that are used for comparison were de-
fined on the same subjects in an earlier study by
Pruessner et al. (2001).

Consequently the atlas to be used for segmenta-
tion—with ANIMAL and AB methods—had to be de-
fined using the same border definitions as those of
Pruessner et al. As no such atlas existed, it had to be
constructed using the same manual labels.

The HC and AG atlases were created by:

● mapping the manual labels (originally defined in
stereotaxic space) in the space of the reference target
(this was done using ANIMAL in nonlinear mode);

● averaging the structures in the nonlinear, refer-
ence target space;

● normalizing the averaged voxel distribution; and
● selecting a threshold (25%) for the extent of the

averaged data (this threshold ensured that the atlas
was limited to the best possible definition of HC and
AG, according to local expert opinion (J.C.P.)).

The atlas was created using 70 of the 80 Pruessner
labels for normal subjects from the ICBM database.
The following figures show a medial slice through the
left HC atlas (Fig. 3) and its superposition on the
average VOI for 70 normal subjects (Fig. 3, inverted
gray scale).

To compare the methods quantitatively, a similarity
measure, first proposed by Dice (1945), was selected.
As shown by Zijdenbos et al. (1994), this measure is a
variant of the standard chance-corrected kappa (�) co-
efficient originally developed by Cohen (1960). This
measure is the same as � when the background is
infinitely large,

�� �
2a

2a � b � c
, (18)

where a is the number of voxels in the intersection of
both labelings, b is the number of voxels only labeled
automatically, and c, those only labeled manually.

A � of 0.7 is usually considered to represent good
agreement between labelings. In comparison, a single
hippocampus, compared with itself after a displace-
ment of only 1 mm in each direction (x, y, z), results in
� � 0.80. The stringency of this test should be kept in
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mind in the discussion on the experimental results to
follow.

5. RESULTS

5.1. Appearance-Based Model Training Results

Before proceeding with experiment results, it
seemed appropriate to include other results from the
training phase of the AB model. The method described
in Section 3 was used to build a model of medial tem-
poral lobe appearance. Figure 4 presents sagittal views
through the medial axis of the volume of interest, after
linear alignment, which form the input data into the
gray-level PCA analysis. Note that the mean VOI has
been subtracted prior to PCA; hence, those are differ-
ence images. Figure 9 presents the image synthesized
by the model for the left VOI of validation subject 321,
as well as the difference between the input and the
synthesized images. One can thus see the residual that
cannot be matched by the model.

For each model, all n � 1 eigenvectors were found,
but not all were retained for training and segmentation
(see Eq. 6). It is interesting to have a look at the
distribution and coherence of the eigenvector results
and the weight associated with each using the ratio rk

(Eq. 6). Figures 5 and 6 display this information for the
gray-level and x models. Graphs for the y, z and con-
catenated appearance vectors (from Eq. 15) display
similar patterns and thus are not shown here; the
significance of this result is discussed in Section 6. Two
graphs are presented for each model; the first shows
the relative weight per eigenvector, across the three
training sets. The second graph displays the cumula-
tive weight of all eigenvectors. From this latter graph
one can easily see how many eigenvectors will be re-
tained for each model, given a user-driven desired per-
centage fraction (Eq. 7) of variations to be explained by
the models.

The same data are now presented differently. For
each training set, weights of all three deformation eig-
envectors (x, y, z) are presented on the same graph (Fig.
7). It is interesting to compare training sets in turn,
looking for significant differences between deformation
directions. Again, as the deviations were minimal, data

for training sets 2 and 3 are not presented here, the
significance of which is also addressed in Section 6.

Equally interesting is the image of the eigenvectors
themselves, or more aptly the principal directions. The
reader will find in Fig. 8 images of the first three
principal components from the gray-level VOI model of
the left-side data, as well as variations around the
mean for each PC. All images displayed are sagittal
views through the medial axis of the VOI.

5.2. AB Segmentation Results

The AB model was used to segment the hippocampus
from 10 subjects for validation and comparison pur-
poses. Manual labels for those subjects were available
(Pruessner et al., 2001). Average � statistic estimates
of the overlap between AB segmented structures and
manual labels are presented in Table 1. Processing
time (the time required to compute the deformation
field for a preprocessed, input volume), excluding off-
line training, was approximately 20 min per side per
subject for the VOI dimensions mentioned above. Ex-
periments were run on a Pentium III 550-MHz PC,
using MATLAB.

Figure 10 presents renditions of the best and worse �
subjects for right-side segmentations using Training
Set 1. AB segmentation results are shown in light gray,
superimposed on the manually segmented right hip-
pocampi in dark gray. Structure overlap is displayed in
black. Figure 11 presents the left HC for subject 347
segmented in three dimensions and superimposed on
the individual’s T1 MR image.

5.3. ANIMAL Segmentation Results

For Experiment 2, ANIMAL software was used to
segment the hippocampus from the same validation set
as Experiment 1. Average � statistic estimates of the
overlap between ANIMAL segmented structures and
manual labels are presented in Table 2. Processing
time (the time required to compute the deformation
field for a preprocessed, input volume) has been ap-
proximated at 120 min per side per subject for the
same VOIs. Experiments were run on a Pentium III
550-MHz PC using compiled C code.

TABLE 1

AB Segmentation � Statistic Average Results for Three
Validation Sets of 10 Subjects Each

Validation set

Left Right

� HC � AG � HC � AG

1 65.0 62.3 69.6 60.6
2 65.4 61.3 68.7 62.5
3 69.9 65.6 72.3 67.0

TABLE 2

ANIMAL Segmentation � Statistic Average Results for
Same Validation Sets as Those Used for AB Segmentation

Validation set

Left Right

� HC � AG � HC � AG

1 67.1 64.5 71.5 62.8
2 67.5 64.0 70.0 64.9
3 73.0 67.7 73.9 68.0
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5.4. AB Robustness Analysis Results

The mean � statistics results of Experiment 3—seg-
mentation of an additional two validation sets—are
shown in Table 1 for AB segmentation and Table 2 for
ANIMAL segmentation.

6. DISCUSSION

This section presents a discussion of the relevance of
an appearance-based segmentation technique, further
comments on experimental results, and finally some
thoughts on the potential for shape analysis.

6.1. On the Relevance of AB Segmentation

The principle of an appearance-based model incorpo-
rating analysis of 3D deformation fields for segmenta-
tion has been demonstrated in the preceding sections of
this article. While this technique presupposes the ex-
istence of an accurate nonlinear registration method
for the creation of a deformation model, a method that
in turn could be used for segmentation, it adds novelty
rather than redundance to the image segmentation
community. Primarily, it extends the actual 2D nature
of appearance matching into three dimensions. Second,
it allows for the creation of an appearance model of the
VOI which a technique like ANIMAL could not per-
form. This modeling may improve the robustness of the
segmentation process in the presence of pathologies.
Finally, other arguments include computational speed
(AB being faster than ANIMAL) and the promise of
shape analysis, which is discussed later in this section.

6.2. Concerning AB Model Training Results

For each model, before performing PCA, the mean
element (mean gray-level image, mean x, y, z warp) is
subtracted from each element. Analysis is therefore
performed on the difference vectors, and the principal
directions explain the variations around the mean.
Consequently a large number of eigenvectors need to
be kept in each model to reach the desired percentage
of explained variation (f).

The results displayed in Fig. 5 signify that (1) linear
registration of the VOI worked well, as no principal

component seems to be related to positional variation;
and (2) the amount of morphological variation from the
mean is small, since the first 10 eigenvectors account
for �20% of total variation in the system.

Interestingly, but not surprisingly, all three defor-
mation directions are statistically equivalent; that is,
no deformation direction seems favored over another.
This forms another proof that (1) linear registration
worked correctly, isotropically; and (2) within the VOI,
differential data do not present any preferential direc-
tion of deformation. For normal subjects the morpho-
logical significance of this last result is not entirely
surprising.

One can see in Fig. 7 that the resulting weights
attached to each eigenvector (using the relative impor-
tance of its eigenvalue) are mostly equivalent, across
training sets. This is in large part due to the common-
ality/overlap within the training sets, since 50 struc-
tures are common to the three training sets of Exper-
iments 1 and 3. It was therefore not expected that the
gray and warp eigenvectors be radically different from
one training set to another.

Images of the principal eigenvectors demonstrate
that the modes of variation follow high gradient lines
(e.g., HC borders) and zones of low intensity (e.g., ven-
tricles), which intuitively seems correct.

Improvements in model training philosophy could be
implemented following the results of Baker and Mat-
thews (2001) and Jones and Poggio (1998).

6.3. Comparing AB and ANIMAL Segmentation
Results

Segmentation speed is approximately six times
faster than ANIMAL or expert manual segmentation.
Its accuracy, measured by statistics of overlap with
respect to manual segmentation, is marginally below
that of ANIMAL as shown in Table 3.

There are a few observations to make regarding the
data presented in Table 3. First, one notes that the
right HC and AG fare better for both techniques. In-
terestingly, the method is completely independent
from the notion of side. On closer examination of the
data, one finds that the atlas that was being used was
actually better defined on the right side than the left

TABLE 3

Segmentation Results, AB versus ANIMAL, Training set 1, Validation set 1, Left/Right

Method Structure

Left Right

Lowest � Highest � � Lowest � Highest � ��

AB HC 57.7 71.3 65.0 63.7 75.8 69.6
AB AG 54.6 71.8 62.3 52.5 71.5 60.6
ANIMAL HC 61.4 71.5 67.1 67.7 75.6 71.5
ANIMAL AG 56.6 74.7 64.5 56.4 72.7 62.6
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side. The averaged data for the right structures consti-
tuting the atlas were more “compact,” yielding evi-
dence of smaller positional variability. Hence, the re-
sulting atlas had clearer boundaries, and since the
variation in the contours was smaller, the resulting
segmentation was better, driving � statistics higher.
The fact that this holds true for ANIMAL as well as AB
segmentation is an indication that the proposed
method, AB, is not side-discriminatory, as it should be.

The same observation holds true for HC results ver-
sus AG results. The AG is systematically less well-
defined in the manually segmented structures, and
hence the atlas is also of a poorer quality. The resulting
segmentation is thus affected by the quality of the
atlas, and hence the � statistics. Equally, the fact that
this holds true for ANIMAL as well as AG segmenta-
tion is an indication that the proposed method, AB, is
not structure-discriminatory.

6.4. Assessing AB Robustness

Results from this experiment, shown in Table 4,
indicate that there are no significant differences be-
tween training sets, on the one hand, and validation
sets, on the other. Incidentally, it gives an expanded
range for statistical analysis of AB segmentation accu-
racy if one considers all 60 structures at once and for
which the observations listed previously hold true.

While the values for AB segmentation presented in
Table 4 are found, on the whole, marginally lower than
those for ANIMAL, one must take into account the fact
that the hippocampus has a large surface-to-volume
ratio, so that even small errors of surface agreement
adversely affect �. It should also be recalled that the
overlap statistic of a 1-mm isotropically displaced HC
(one voxel off in each direction) against itself is � �
0.80. From analysis of the images, both AB and ANI-
MAL segmentation techniques generally overseg-
mented the structures, a condition brought about by
the poor definition of the atlas being used around its
boundaries. Hence, results using a nonoptimized atlas
indicate that the AB method measures favorably
against established nonsupervised techniques and hu-
man observers, while being significantly faster.

The reader should also note that overlap statistics
are hard to compare in an absolute way with results

from another technique, when the same data, models,
and atlases are not used. It would have been easy to
adjust the threshold parameters of the model to in-
crease the � statistic figures at the expense of anatom-
ical trueness, but the point would have been lost. The
central element of these experiments was to compare
this novel approach with ANIMAL, itself an already
established technique with a track record of accuracy.
The key conclusion to retain is thus the ability of this
technique to segment within a 2% (HC and AG) differ-
ence of ANIMAL. It is probable that another statistical
test could be used that would be less stringent or
sensitive than �, while yielding more comprehensive
information about the quality of the segmentation.

6.5. On the Potential for Morphometry or Shape
Analysis

Hippocampal shape is now at the forefront of brain
imaging research. For example, analysis of shape de-
formations is being used for early diagnosis of demen-
tia of the Alzheimer type (DAT) (Csernansky et al.,
1998). A means of quantifying 3D shape deformations,
and thus performing shape analysis, is embedded in
the segmentation technique proposed in this thesis.

The basis of this idea originates from a closer look at
the allowable warp domain. The distribution of the
eigencoordinates that arise from the projection of sub-
jects in the spaces defined by the training set can be
used as a probability function which serves to charac-
terize the type of population being projected.

It is conceivable that, coupled with other methods in
the proper statistical framework, results from such a
deformation analysis could increase both specificity
and sensitivity of diagnosis for a number of neurologi-
cal disorders and possibly aid in early detection, as
well, of course, as serving to characterize “normal”
populations. Other techniques such as volumetric anal-
ysis and/or voxel-based morphometry could be corre-
lated with the results from this approach in the form of
an image processing protocol as an aid to diagnosis.

A second benefit from this analysis is not only to
derive a simple factor of “distance” and relate it to the
presence or not of pathologies, but also to correlate
diagnostic information to a particular principal compo-
nent. This idea is closer in spirit to the work of Cser-
nansky et al. (1998). Trained eyes are able to give
anatomical interpretations of at least the first few PCs.
When this is not feasible, however, factor analysis can
be used. Knowing which PC can be statistically asso-
ciated with a disease state yields important informa-
tion for the clinicians. For example, it has the potential
to detect variations in the shape of an organ when
there are no discernable volume changes or where
volumetric data cannot determine the location of atro-
phy.

TABLE 4

Robustness Results: Average � Statistics over Three
Training Sets for Each Structure

Method Structure
��

Left
��

Right Final �

AB HC 66.7 70.2 68.5
AB AG 63.1 63.4 63.3
ANIMAL HC 69.2 71.8 70.5
ANIMAL AG 65.4 65.2 65.3
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7. CONCLUSION

The original motivation of the work was to develop a
new segmentation method, embedding statistically rel-
evant a priori information, that could achieve the same
accuracy as ANIMAL while possibly reducing compu-
tational cost. This goal has been met by the appearance
based method, which incorporates analysis of dense 3D
deformation fields from ANIMAL into the framework
of appearance-based segmentation. This article has
presented the theoretical basis for such a method, as
well as a series of experiments and results that took
this concept past the proof of principle stage, into the
domain of applicability. While more work remains to
increase its efficiency in terms of accuracy, the method
is ready to be used for segmentation tasks in a number
of areas of interest to researchers. The gains in speed,
compared with available MNI segmentation tech-
niques, render this approach immediately attractive
for a number of prospective and retrospective studies
on the MTL and other regions. The potential for mor-
phometry should also be explored in detail to extract
all possible diagnosis information from the data col-
lected.

ACKNOWLEDGMENTS

This study was supported by Fonds pour les Chercheurs et l’Aide
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