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Abstract— Classification of neurological diseases based on
image characteristics often requires extensive modeling and
user intervention. While other techniques concentrate on
specific structures, the novelty of the method presented here
resides in its analysis of the grey-level apperance of large,
non-specific Volumes of Interest (VOI) from T1 MRI data.
No manual intervention is required other than the selection
of the VOI. This work presents the methodological frame-
work and preliminary results towards our aim of classifying
normal subjects and patients with Temporal Lobe Epilepsy
(TLE) within the Medial Temporal Lobe. For this purpose,
Principal Components Analysis is performed on a set of nor-
mal subjects for the creation of a multi-dimensional space
representative of a normal population. New data for nor-
mal and TLE subjects are projected in this space, under the
assumption that the distributions of the projections are not
identical and can be used for classification. It is shown that
Linear Discriminant Analysis of the eigencoordinates of the
projected data can be used to classify normals vs TLE with
a T0% accuracy based on only 10 eigenvectors. This results
can go up to 100% if all eigenvectors defining the grey-level
space are used.

Keywords— Magnetic Resonance Imaging, Pattern Classi-
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I. INTRODUCTION

LASSIFICATION of neurological diseases based solely

on their imaging characteristics is a challenging task
for computer vision. Most of the work to date on auto-
mated classification of various diseases or disorders such
as epilepsy [4], Alzheimer’s disease [7], and schizophre-
nia [13], [10] has been focused on MR image analysis of
the hippocampus (HC), a structure which is affected by
pathological processes in these diseases. Temporal Lobe
Epilepsy (TLE) is characterized by seizures originating in
the medial temporal lobes (MTL). TLE is frequently asso-
ciated with hippocampal atrophy, which has been shown
to correspond to neuronal loss and gliosis on histology. On
T1-weighted MRI, a hypointense signal is observed within
the hippocampus.

Recent observations in animal models [3] and in patients
with TLE [1], [2] indicate that the epileptogenic zone is
broad, suggesting that the substrate for seizure generation
is distributed over a network including several other struc-
tures in the MTL. Therefore, we believe it possible to de-
sign a classification technique which would use intensity
information from a large, non-specific Volume of Interest
(VOI) rather than one particular structure such as the HC.

Other works require the segmentation of all structures of
interest within the VOI and the identification of relation-

N. Bernasconi, A.Bernasconi and D.L. Collins
are with the Brain Imaging Center, Montréal Neurologi-
cal Institute, McGill University, Montréal, Canada. Email:
{duchesne,neda,andrea,louis } @bic.mni.mcgill.ca

S. Duchesne,

ships between them. In our approach, the appearance of
the VOI as a whole is assessed without explicit segmenta-
tion.

In this sense, our current work follows the direction of the
appearance-based segmentation technique which we pro-
posed in [8]. This segmentation process, inspired by the
methods of Cootes et al. [6], models of the intensity charac-
teristics and shape deformations of the VOI are constructed
and concatenated into an appearance model for the Vol-
ume. The linear modeling employs Principal Components
Analysis (PCA) to generate spaces of allowable variations
in grey-level intensity and shape deformations. For the
purposes of this study, we concentrate on the grey-level
characteristics of the VOI, consequent with our research
hypothesis that there exists sufficient discriminatory infor-
mation between intensity distributions of normal and ab-
normal populations to effectively classify a new subject.

Thus, if one takes the eigenvectors of the linear grey-level
model as orthonormal bases spanning an n-dimensional al-
lowable space (where n is the number of voxels present),
the distribution of the projection in this space of data from
subjects belonging to the training set can be used as a
probability function characterizing the type of population
present in the training set. A matching statistic can be
assigned for grey-level images of a new subject projected
in the same space. This similarity measure can be associ-
ated with a particular pathological difference between the
new subject and the training set. The aim is to derive
diagnostic information correlated to a particular Principal
Component (PC) or distribution in PCA space.

The goal of our research in this area is thus concerned
with the development of an automatic classifer which would
serve to identify TLE based solely on grey-level appearance
of the MR images. The aim of this paper is to present the
methodology for such an application.

II. METHODS
A. Creation of multi-dimensional spaces to represent data

As mentioned earlier, the background for this work stems
from our work in appearance-based segmentation where a
number of PC spaces were created from analysis of a num-
ber of VOIs from a training set, as well as their correspond-
ing nonlinear deformation fields.

In this work a space is being created from grey-level PC
which could be used to characterize images. The notation
employed by Cootes [6] will be closely followed. We start
by using an initial set of N normal subjects (see section ITI-
B), the Domain Definition set, to form an Allowable Grey
Domain (AGD). To make the PCA a zero-mean process, in-



put Volumes into the analysis are difference images. Hence
this difference vector g consists of rasterized grey-level data
from the original VOI v gubject input minus the average of
all original volumes V average input:

(1)

and hence we define g as the arithmetic average of the
difference images, or

8 = V subject input — V average input

=y v @
i=1

and not the average of the input volumes. In effect, the
PCs therefore extracted represent or explain the differences
between a subject and the mean of the group. The VOI,
albeit not homogeneous, does not exhibit large variability
between subjects.

PCA is used to reduce the dimensionality of the grey-
level data and generate a linear grey variation model [6]:

g=g+PgBg (3)
which allows any grey-level difference vector instance g to
be approximated by g, the mean normalised grey-level dif-
ference vector, Pg, the set of orthogonal modes of variation
and Byg, the set of grey-level parameters.

In order to know how each principal direction contributes
to the description of the total variance of the system, the
ratio of relative importance of the eigenvalue A associated
with the eigenvector k is used

Tk (4)
where the fraction rj, is the relative importance for eigen-
value Ay, over the sum of all )\, since p is the total number
of eigenvectors. Note that p = N — 1 and constitutes the
upper bound on the dimensionality of P, and B,.

In the aforementioned PCA model, a percentage f% is
selected, such that ¢ eigenvectors are kept which explain
this desired level of variance for the system:

r1+r2+...+rt>i (5)
100
The choice of threshold f will be dependent on the total
amount of variation which the model is asked to repre-
sent. Statistical methods of finding the optimum number
of eigenvectors exist but have not been implemented yet.

We define the Allowable Grey Domain G as the space
of all possible elements expressed by eq. 3, V Pg, and a
restricted version of this space, G*, such that

Gi‘;,g C Gp, (6)
and where the upper bound on the dimensionality of G is
p, as defined above, while the upper bound for G* is ¢, set
by choosing the threshold f in eq. 5.

B. Extraction of features of interest and classification

Closely following the notation of Duda et al. [9], we will
define two states of nature w: wy = normal subjects and
wo = temporal lobe epileptics. Note that normal subjects
are part of a control group and are not the same as those
belonging to the training or Domain Definition set used to
create the AGD.

For the purposes of this work, the prior probabilities
p(wr) and p(we) are known since the compositions of the
classification data sets will be known exactly (see sec. III).
Note that they do not represent the normal incidence rates
of TLE in the general population.

MRI data difference volumes from each of the two w
categories are projected into the Domain G* and thus form
the eigencoordinate vectors x{’

Xy = (Vi) # Vg (7)

where V¢ represents the rasterized grey-level vector for
each training volume belonging to the two different cate-
gories.

A number of possible features can now be calculated on
the distribution of these eigencoordinate vectors. The one
we will originally base our classification scheme on is the
position along the PC axis. We can reasonably assume that
it can be represented by a Gaussian distribution, and thus
the formulation of our feature vectors p for each subject ¢
follows easily from eq. 7:

Py =Xi (8)

The design of our classifer is simple. A multivariate lin-
ear discriminant analysis has been chosen, where the dis-
criminant function can be expressed as follows [9]:

9)

where w is the weight vector and wy the bias or threshold
weight. For a two-category classifier we will implement the
following decision rule: decide w; if g(x) > 0 and wy if
g9(x) <0.

g(x) = w'x + wy

III. EXPERIMENTS AND RESULTS
A. Image preparation

All global MRI data were pre-processed to correct for
intensity non-uniformity due to scanner variations [12], lin-
early registered into stereotaxic space and resampled onto a
1mm isotropic grid [5]. VOIs were defined on T1-weighted
MR images with isotropic resolution of 1mm?3. Initial test-
ing was centered on the left medial temporal lobe (VOI of
55 x 79 x 68 voxels). The extent of this volume captured
the hippocampus and neighboring structures irrespective
of normal inter- and intra-individual variability. The VOIs
were then linearly registered unto a reference target (aver-
age of 152 ICBM subjects, see sec. ITI-B) to further reduce
positional variations which would propagate as unwanted
noise in the morphometric PCA modelling. Finally, VOIs
were intensity-normalized with respect to the reference tar-
get for the same reason.



The following figures show grey-level sagittal images of
the complete VOI near the hippocampus medial axis of
two subjects, Subject Normal#2 in Fig. 1(a) and Subject
TLE#1 in Fig. 1(b).

Fig. 1. (a) Normal subject #2 - Sagittal view through the medial
axis of the left input VOI (b) TLE subject #1 - Sagittal view through
the medial axis of the left input VOI

B. Creation of multi-dimensional grey-level space

The method described above was used to build a model
of left MTL appearance. Figure 2 shows the number and
cumulative weight rp (see eq. 4) of eigenvectors for the
Domain Definition set of 70 normal subjects taken from
the International Consortium for Brain Mapping (ICBM)
database [11]. We arbitrarily selected a threshold f of
97.5% which resulted in ¢ = 66 eigenvectors being retained.

C. Linear Discriminant Analysis and Classification

In order to build our classifer we selected an additional
20 normal subjects and 20 confirmed TLE subjects with
known atrophy of structures in the MTL as measured by
one of the authors (N.B.). On the basis of clinical tests
and EEG it was determined that 10 of those were predom-
inantly left TLE and the remaining right TLE patients.
The groups were matched for age and handedness. Prior
probabilities for each state of nature w were then equal,
Puw(1,2) = 0.5.

Fig. 3 displays the position information for normal and
TLE data sets along PC # 2 and 10. In these two examples
one can readily see that there exists sufficient discrimina-
tion between the two probability density functions to allow
classification.

The results from our multivariate linear discriminant
analysis (LDA), using different numbers of eigenvectors T,

Individual grey-level eigenvector weight

Grey-level eigenvector weights sum
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Fig. 2. Comparison of grey-level eigenvectors. (Left) Individual
eigenvector weights as found in eq. 4 (Right) Eigenvector weights sum
for the Domain Definition set. It is important to note that the large
number of eigenvectors is a direct consequence of their expressing the
variations in the difference from the mean element, and not the ele-
ments themselves. Recall that p = N —1 (N = 70) for this experiment
and that for f = 97.5%, ¢ = 66 eigenvectors will be retained.
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Fig. 3. Plot of position or eigencoordinates in Domain G* for 15
Normal(x) and 15 TLE(o) subjects along PC axis 2 (left) and 10
(right)

are summarized in Table I and jacknifed analysis for the
same conditions in Table II below. Following stepwise re-
gression, we were able to obtain a total classification rate of
70% using only the first 10 PCs, with maximum discrim-
inatory power concentrated in PC#10. Jacknife analysis
for the same conditions lowers this total estimate to 68%.
These rates jump to 100% accuracy in both types of anal-
ysis if we were to use all 66 eigenvectors available.

IV. DISCUSSION

The formulation of this classification problem is simple
and flexible, allowing a number of possible features to be
used without extensive reengineering. Preliminary results
indicate that the position information (eigencoordinates) of
new data projected in a multi-dimensional grey-level Do-
main is sufficient to adequately discriminate between our
two populations. The classification rates obtained here are
comparable with those of volumetry obtained by one of the
authors (N.B.).

A striking result is that a left-sided model was able to
classify both left and right-sided TLE, which is commensu-
rate with observations (see [4]) that the contra-lateral side
is also affected by the disorder, albeit to a lesser degree. It
is also important to note that the PCA technique as em-
ployed here requires no manual intervention other than the
definition of the VOI, which is done once at the onset for
the creation of the Domain G*. This is to be compared to
volumetry, in which an expert neuroanatomist must man-



| T =10 || Normals | TLE | % correct

Normals 14 6 70
TLE 6 14 70
Total 20 20 70

T = 39 || Normals | TLE | % correct

Normals 15 5 75
TLE 5 15 75
Total 20 20 75

T = 66 || Normals | TLE | % correct

Normals 20 0 100
TLE 0 20 100
Total 20 20 100

TABLE I

CLASSIFICATION MATRIX RESULTS FOR MULTIVARIATE LDA. T
REPRESENTS THE NUMBER OF EIGENVECTORS RETAINED FOR THE
ANALYSIS. TRUE CLASSIFICATION RESULTS ON THE
NORMALS-NORMALS / TLE-TLE DIAGONAL.

T = 10 || Normals | TLE | % correct
| [ | TLE |

Normals 14 6 70
TLE 7 13 65
Total 21 19 68

T = 39 || Normals | TLE | % correct

Normals 15 5 75
TLE 15 5 75
Total 20 20 75

T = 66 || Normals | TLE | % correct

Normals 20 0 100
TLE 0 20 100
Total 20 20 100

TABLE II

JACKNIFED CLASSIFICATION MATRIX RESULTS FOR MULTIVARIATE
LDA. T REPRESENTS THE NUMBER OF EIGENVECTORS RETAINED FOR
THE ANALYSIS. TRUE CLASSIFICATION RESULTS ON THE
NORMALS-NORMALS / TLE-TLE DIAGONAL.

ually delineate the ill-defined contours of structures of in-
terest such as the HC, for a segmentation time of 2 hours
per side per subject.

The relatively small number of subjects, compared to
the number of eigenvectors available, preclude larger con-
clusions on the statistical significance of these results. Yet,
it holds significant promise for the future. Future direc-
tions for our work will include: (a) include more data in
the training and classification sets; (b) include non-linear
registration of the training and classification VOIs to fur-
ther reduce anatomical variability; (c) identification of the
anatomical and pathological importance of the Principal
Components holding maximum discriminatory power; and
(d) factor analysis. It is also our hope that this classifier
will be sufficiently robust to lateralize TLE into determin-
ing which of the two (left or right) MTL is most affected.
Most likely this will imply the creation of a left and right-

sided grey-level model and subsequent hierarchical classifi-
cation.

V. CONCLUSION

The underlying assumption for this work is that there
exists sufficient information in the grey-level intensity VOI
of normal and abnormal subjects to be used for classifica-
tion of normal and TLE patients. Hence, an appearance-
based approach is proposed to extract features of interest
from the images. The feature vector which we use corre-
sponds to the eigencoordinates of our training data into
multi-dimensional spaces formed by Principal Components
of a grey-level linear model for this VOI. Preliminary re-
sults indicate that this technique can be highly successful.
The ability to classify TLE without the need for explicit
segmentation, and thus simply based on the appearance
of MR images, would improve the current procedures of
diagnostic as it is automated and objective.
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