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Accurate reconstruction of the inner and outer cortical surfaces of

the human cerebrum is a critical objective for a wide variety of

neuroimaging analysis purposes, including visualization, morphom-

etry, and brain mapping. The Anatomic Segmentation using

Proximity (ASP) algorithm, previously developed by our group,

provides a topology-preserving cortical surface deformation method

that has been extensively used for the aforementioned purposes.

However, constraints in the algorithm to ensure topology preserva-

tion occasionally produce incorrect thickness measurements due to a

restriction in the range of allowable distances between the gray and

white matter surfaces. This problem is particularly prominent in

pediatric brain images with tightly folded gyri. This paper presents a

novel method for improving the conventional ASP algorithm by

making use of partial volume information through probabilistic

classification in order to allow for topology preservation across a less

restricted range of cortical thickness values. The new algorithm also

corrects the classification of the insular cortex by masking out

subcortical tissues. For 70 pediatric brains, validation experiments

for the modified algorithm, Constrained Laplacian ASP (CLASP),

were performed by three methods: (i) volume matching between

surface-masked gray matter (GM) and conventional tissue-classified

GM, (ii) surface matching between simulated and CLASP-extracted

surfaces, and (iii) repeatability of the surface reconstruction among

16 MRI scans of the same subject. In the volume-based evaluation,

the volume enclosed by the CLASP WM and GM surfaces matched

the classified GM volume 13% more accurately than using conven-

tional ASP. In the surface-based evaluation, using synthesized thick

cortex, the average difference between simulated and extracted

surfaces was 4.6 T 1.4 mm for conventional ASP and 0.5 T 0.4 mm

for CLASP. In a repeatability study, CLASP produced a 30% lower
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RMS error for the GM surface and a 8% lower RMS error for the

WM surface compared with ASP.
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Keywords: Cortical surfaces; Partial volume estimation; Laplacian map
Introduction

Accurate reconstruction of cerebral cortical surfaces from

magnetic resonance images (MRI) is an important issue in

quantitative brain analysis, visualization, cortical mapping, and

multimodal registration. In particular, accurate reconstruction of

the inner- and outer-surfaces of the cortex is essential to obtain

reliable measurements of cortical thickness. Most MR images

however, suffer from partial volume effects (PVE) due to the

limited resolution of MRI scanners which can cause voxels on the

boundary between tissues to be blurred, making accurate surface

determination difficult. This problem is most pronounced in tightly

folded sulci, where cerebrospinal fluid (CSF) is often hardly

detected due to the fact that opposing sulcal banks can be closer

than the MRI resolution, thus exhibiting a fused appearance. As a

result, the boundary surface between gray matter (GM) and CSF,

referred to hereafter as the pial surface, might not be correctly

localized, and hence any derived morphometric information such

as cortical thickness may be inaccurate. The worst case partial

volume effect is having no CSF within identified sulci, and thus, no

apparent sulci. Fig. 1 shows a surface deformed to fit the pial

surface and gray-white boundary, hereafter referred to as the white

matter (WM) surface. The WM surface contains well formed sulci,

but the pial surface does not due to the fact that partial volume

effects are resulting in little CSF being identified in buried sulci.

This observation motivated the original ASP authors to use

http://www.sciencedirect.com
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Fig. 1. Demonstration of partial volume effect within sulci. (a) Classified

cross-section of an image obscured by partial volume effect, (b) the WM

surface (red line) estimated on a discrete classification, (c) the GM surface

(red line) estimated on a discrete classification. Blue arrows indicate

examples of the obscured boundary between GM and CSF. The GM surface

might not describe the folded sulci based on a discrete tissue classification

if there is no constraint of sulcus.
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information about the relative position of the WM surface in order

to improve the pial surface extraction.

A number of methods currently exist for identifying the cortical

surface. They can be classified into bottom-up approaches using

edge detection and top-down approaches using model based

deformation. One of the most common bottom-up approaches is

the ‘‘Marching Cubes’’ algorithm which is of restricted utility for

cortical surface extraction, since noise and the complex cortical

folds make it difficult to obtain a smooth topologically correct

surface reconstruction (Lorensen and Cline, 1987). Although there

have been approaches to fix the topology of marching cubes

surfaces (Han et al., 2002; Shattuck and Leahy, 2001), it is difficult

to define the correct outer-cortical boundary because of tightly

opposed sulcal banks.

In recent years, several excellent methods using a top-down

approach or mixed approach with bottom-up methods have been

developed for automatically extracting the cortical surface. Dale et

al. introduced an automatic approach that is implemented in the

freely-available FreeSurfer program (Dale et al., 1999; Fischl et al.,

1999). This program initially finds the WM surface, and then fits

smooth WM and pial surfaces using deformable models involving

spring, curvature, and intensity-based terms. The authors developed

morphological operations to improve the topology of a binary WM

volume and then expanded a deformable surface toward the outer
GM boundary. This approach was a significant advance, but the

algorithm lacked a method for preventing self-intersecting top-

ologies. To preserve topology, MacDonald et al. developed a

cortical surface extraction procedure known as Anatomic Segmen-

tation using Proximity (ASP) (MacDonald, 1998; MacDonald et al.,

2000). This method is an improved version of Multiple Surface

Deformation (MSD) for simultaneous deformation of multiple

curves and surfaces to an MRI, with inter-surface constraints and

self-intersection avoidance (MacDonald et al., 1994). ASP uses a

topology-preserving deformation model with proximities, and

automatically identifies the WM and pial surfaces of the cerebral

cortex in a robust way with respect to partial volume effects by

means of forcing the cortical thickness to lie within a defined

anatomically-plausible range of values. Since the ASP algorithm

deforms from a spherical polygonal model with proximities, it

preserves the topology of a spherical sheet which, once deformed,

serves as a model of the cortical sheet. But since this approach

imposes a thickness constraint in order to insure topological

correctness, it introduces a bias in the true calculation of cortical

thickness in populations which may have much thicker or much

thinner cortices than the constraints in the algorithm currently allow,

such as children or specific diseased populations. Moreover, since

the ASP method does not account for the poor differentiation

between the putamen and the insula in the discretely classified

image it uses as input, thickness values in the insular cortex are very

inaccurate. Han et al. also introduced a topology preserving

geometric deformable model (Han et al., 2001a,b), which recon-

structs the pial surface by correcting the topology of a GM

segmentation. This method estimates the position of sulci by

assuming that they are equidistant, on either side, to the WM

surface. While this approach was successful at preventing self-

intersection, creating the representative topology based on the WM

surface misplaces asymmetrically folded sulci. Kriegeskorte and

Goebel developed a method which detects and removes topological

errors as part of tissue classification (Kriegeskorte and Goebel,

2001). Their method uses a self-touching sensitive region growing

process prioritized by distance-to-surface voxels considered for

inclusion, and topologically corrects reconstructions of a cortical

sheet. The use of region growing methods for detecting edges is an

efficient and fast approach to surface extraction, however, the

topology correction does not perfectly reconstruct the pial surface in

the buried sulci where the intensity level in regions which contain

CSF are very similar to that for GM due to partial volume effects.

In this paper, we introduce a fully automatic method to

reconstruct the pial surface, called CLASP, which stands for

Constrained Laplacian-based ASP, a modification of the original

ASP algorithm (MacDonald et al., 2000). This method uses a more

complex classification method with a statistical probabilistic

anatomical map (SPAM) to estimate the boundary of the insula.

Moreover, CLASP makes use of a novel geometric deformable

surface model which estimates the pial surface through the use of

partial volume effect information. We specifically focus on

improving the accuracy of reconstructing the pial interface, as this

surface presents the most serious morphological challenges to the

conventional ASP method. To remove the necessity of a cortical

thickness constraint, we incorporated a classification method for

detecting the partial volume fraction of CSF in deep sulci. The pial

interface is created by expanding from the WM surface, while the

WM surface is extracted by the same technique used in the original

ASP procedure. The expansion path for creating the pial surface is

defined as a Laplacian map between the WM surface and a
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skeletonized CSF map. The Laplacian approach is similar to a

method presented by Jones (Jones et al., 2000) to estimate cortical

thickness, but differs in that it is performed in voxel space and is

used for surface expansion. This algorithm solves Laplace’s

equation with the cortical volume as the domain for solution of

the differential equation, as well as separate boundary conditions at

the gray-white junction and the gray-CSF junction. Distinct from

other methods, we use measured CSF from partial volume

classification to preserve the morphology of the boundary between

GM and CSF, particularly in buried sulci, while the outer bound of

the GM surface expansion is defined by the GM/CSF interface

from a discrete classification. This framework ensures that the

method will yield surfaces that are topologically equivalent to a

sphere and that do not self-intersect, completely removing any

requirement of prior information about a range of allowable

thickness values as a constraint. Moreover, we use the Laplacian

term so as to locally vary the expansion force of the pial surface by

predicted cortical thickness at each vertex.

In order to compare the results, we made use of three evaluation

procedures. These included a volume-based evaluation which

compared GM voxels identified by discrete tissue classification

with a GM voxel map created by each of ASP and CLASP. This

voxel map is essentially cortex voxels bounded by the WM and

pial surfaces. Secondly, a surface-based evaluation was used which

compared a pial surface extracted by ASP or CLASP with a

simulated, ‘‘ground truth’’ template surface. Lastly, we analyzed

the consistency of the CLASP procedure using surfaces extracted

from 16 scans of the same individual.
Method

The CLASP algorithm consists of several stages as follows: (1)

acquired T1 MR images are preprocessed by intensity inhomoge-

neity correction and spatial normalization to stereotaxic space. (2)

Preprocessed images are classified into GM, WM, and CSF tissues.

(3) Processed volumes are divided into left and right hemispheres

for reconstructing two hemispheric cortical surfaces. (4) The WM

surface is reconstructed by deforming a spherical polygon model to

the white matter boundary. (5) A Laplacian field is generated

between the WM surface resampled to voxel space and a

skeletonized CSF fraction image. (6) The GM surface is initiated

from the WM surface and is expanded to the boundary between

GM and CSF along the Laplacian field. These stages are described

in greater detail in what follows.

Non-uniformity correction and registration

Intensity non-uniformity in raw MR images due to magnetic

field inhomogeneity must be corrected so that volumes can be

properly classified into GM, WM and CSF. The non-parametric N3

method, which iteratively maximizes the frequency content of

tissue intensity distributions (Sled et al., 1998) was used here.

In order to spatially align the brains, automatic registration to

stereotaxic space (Collins et al., 1994b; Evans et al., 1992, 1993;

Talairach and Tournoux, 1988) was performed using the intensity-

corrected image. This procedure computes the linear transforma-

tion parameters by gradient descent at multiple scales to maximize

the correlation between the individual volume intensity and an

average template volume (Collins et al., 1994a). Finally, a 3-D

stereotaxic brain mask is used to remove extra-cerebral voxels.
Classification

Two different types of classified images are used during the

surface extraction procedure. One is a discrete classification that

is employed to find the boundary between WM and GM as well

as GM and CSF. The other is a probabilistic partial volume

classification used to detect buried CSF voxels in sulci and to

differentiate subcortical and cortical gray matter. In discretely

classified volumes, voxels classified as pure CSF are rare in

folded sulci due to the fact that sulcal walls are often so close that

voxels in these regions, even in high resolution images, have a

higher content of GM than CSF, making the sulcal walls appear

fused. Thus, the true pial surface is generally not found in the

folded sulci. In order to compensate for this partial volume effect

in these regions, we utilized partial volume classification,

providing fractional estimates of the content of GM and CSF

for such voxels. Improved localization of the pial surface is then

possible since voxels in deep sulci which contain small amounts

of CSF are given a mixed GM/CSF classification instead of a

pure GM classification.

Discrete tissue classification

A k-nearest neighbor (k-NN) classification technique is used

to automatically label each voxel by tissue type (background,

CSF, GM, WM), using a non-uniformity corrected, high

resolution MR image in stereotaxic space. This method makes

use of stereotaxic spatial priors as well as intensity features to

reduce the occurrence of anatomically implausible voxel classi-

fication (Cocosco et al., 2003). These 3-D prior volumes

containing the probability of each voxel belonging to a given

tissue class, were generated from a sample of several hundred MR

volumes that were classified by a semi-automatic technique. The

training set is defined for the k-NN classifier, by first selecting

points from voxel positions with a high probability of containing

a given tissue type and then pruning to remove outlying intensity

values for each tissue class, thus customizing for a particular scan.

Each voxel in the subject images is then independently classified

into one of the defined tissue types resulting in a discrete three

dimensional volume, where each voxel has one of the afore-

mentioned labels.

Partial volume classification

The partial volume segmentation was performed using a

statistical model of the partial volume effect known as the mixed

model (Choi et al., 1991), in which the contents of a voxel are

expressed as the weighted sum of random variables. The weights

represent the fractional amount of a particular tissue, while the

random variables represent the intensity distribution for each pure

tissue class. The approach taken here is an extension of a method

we have previously presented (Tohka et al., 2004) which has been

modified to improve segmentation in deep sulci and to differentiate

between cortical and subcortical (SC) gray matter. The segmenta-

tion procedure is divided into two steps, including the estimation of

a context image (C*) (i.e., voxels are given either a pure or mixed

tissue label: GM, WM, CSF, SC, GMWM or GMCSF, SCWM, or

SCGM), necessary to make the problem tractable in the single

spectral case and a fraction estimation stage to estimate the amount

of tissue in mixed class voxels. The iterative condition modes

(ICM) algorithm is then used to solve for the context image, while

maximum likelihood estimation is used to solve for the fraction

values. If C represents the context image we are trying to estimate
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and X represents the acquired image, an estimate of the context

image can be made use a Maximum A Priori (MAP) criterion:

C4 ¼ argmax
C

p Cð Þ p C k Xð Þ;

where the prior information, p(C) is modeled as a Markov random

field. One of the modifications we have made to our previous work

is to use a spatially varying Markovian random field (MRF) as

prior information, which acts in a smoothing fashion in most image

areas, but adaptively modified its behavior in deep sulcal regions to

encourage voxels with mixed tissue labels to occur adjacent to

voxels that have pure tissue labels. Like our previous work, we

employ a Potts model to represent the MRF:

p Cð Þ” p � b ~
N

i ¼ 1

~
k Z Ni

aik

d i;kð Þ

 !
:

where b is the MRF weighting parameter, i is the index of a voxel

from the image X, N is the total number of voxels, Ni is the 26

neighborhood of i, k is the index of a voxel from Ni, and d(i,k) is

the Euclidean distance between voxel i and k. The value of aik is

determined by the relationship between the voxel label at k, Ck,

and the label at i, Ci. In our previous work, aik solely worked to

encourage spatial smoothing. In our present approach, its behavior

is modulated to encourage GM/CSF and CSF labeled voxels to

occur between GM labeled voxels in deep sulcal areas:

aik ¼

� 2 ci ¼ ck

� 1 ci;ck share a component and

ci u GMCSF;CSFf g or c X ;ið Þ � 0

f M X; ið Þð Þ ci;ck share a component and

ciufGMCSF;CSFg and c X ;ið Þ < 0

1 otherwise

;

8>>>>>>>><
>>>>>>>>:

where M is an MRF-influence image used to probabilistically

identify deep sulcal areas, and f is a sigmoid function that

modulates the influence of the parameter. The influence image is

based on an average of two pieces of information. The first of these

is image curvature calculated from a T1 scan blurred with a

Gaussian kernel (FWHM = 4 mm) (Thirion and Gourdon, 1993),

where negative curvature areas represent sulcal regions. The

second is the medial surface of the union of GM and CSF from

a discretely classified image. This latter image is determined by

calculating a distance transform of the inverse of the GM + CSF

union (Borgefors, 1984). A gradient magnitude image is then
Fig. 2. A T1 weighted image, a medial surface image and negative curvature ima
calculated from the distance transformed image and the resultant

image is geometrically smoothed (Kimia and Siddiqi, 1996) to

reduce noise. Finally, its intensity values are transformed so that

medial regions roughly correspond in value to the negative areas in

the curvature image. Examples illustrating these two types of

information are shown in Fig. 2.

A significant increase in voxels identified as containing CSF

using the partial volume method as opposed to discrete classi-

fication can be seen in Fig. 3, particularly in buried sulci.

The other modification made was to include a subcortical

gray matter tissue (SC) class in the partial volume segmentation,

along with classes for mixed WM/SC and SC/GM. These classes

were not used in the entire image, however, but only in regions

where subcortical tissue (thalamus, globus pallidus, putamen, and

claustrum) and the insular cortex were expected based on

SPAMs generated from 40 images in the ICBM data set.

Specifically any voxel that had any probability > 0 of coming

from one of these structures was classified using the extra

classes. In such regions, the WM/GM class was also eliminated.

Identification of all structures prior to creating the SPAMs was

done using the ANIMAL non-linear registration package (Collins

et al., 1994a,b). The mean and variance values for the SC class

were calculated by using the intensity of points with >50%

likelihood of coming from a subcortical structure and applying a

robust parameter estimation technique (Tohka et al., 2004). An

example of a classification using the extra classes is shown in

Fig. 4.

Skeletonization of the CSF fraction image

In CLASP, the GM surface is determined by expanding outward

from the WM surface until the GM/CSF boundary is found. The

process is guided (in a manner that is outlined in the next section)

by the use of partial volume CSF in order to insure correct sulcal

morphology. To facilitate this, the partial volume CSF calculated is

binarized, setting any voxel containing CSF to 1 and all others to 0,

and then skeletonized. The skeleton is created using a 2-subfield

connectivity-preserving medial surface skeletonization algorithm.

(Ma and Wan, 2001; Ma et al., 2002). An example of a CSF

skeleton is shown in Fig. 3.

Reconstruction of the WM surface

The classified MR image is separated into volumes represent-

ing each cortical hemisphere, by identifying the midsagittal plane
ge, respectively. Note how sulci are generally localized in the darker areas.
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Fig. 3. Classification and skeletonized CSF: (a) Discrete classification, (b)

PVE classified CSF, (c) the skeletonized CSF (green) overlapped with its

T1 image, and (d) the skeletonized CSF (green) overlapped with INSECT

classification. Note that skeletonized CSF voxels represent buried sulci very

well while INSECT classification does not.

Fig. 4. A partial volume classification (a), illustrating areas (b) that have

been classified as subcortex (intensity indicates probability of subcortex).

Light gray and white areas of (a) are classified as WM. This helps in

correctly localizing the boundary of the insula.
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which passes through anterior and posterior commissures in

spatially normalized stereotaxic space.

TheWM surface in each hemisphere is reconstructed in the same

manner as the ASP algorithm. As described in Classification, since

segmentation of the subcortical structures is not perfect, the WM

surface is corrected using gradient map values around the boundary

of the insula calculated from a T1 image. Due to the presence of high

gradient boundaries in surrounding structures, it is possible that the

WM surface at the insula could be localized to an improper

boundary. We reduce the possibility as follows: (1) since the

segmentation for the subcortical structures based on SPAMs gives a

good initial localization of the WM surface, the WM surface needs

only to be slightly deformed. (2) Voxels in the gradient map close to

the boundary between GM and CSF are masked out using a binary

mask image, created by calculating the intersection of the gradient of

a CSF fraction image and the gradient of a classified GM tissue

volume. (3) The gradient image is also blurred by a 1-mm FWHM

kernel to reduce noise. We add a gradient term, TGradient , to the

original set of ASP constraints, to fit the WM surface:

TGradient ¼ ~
nv

v ¼ 1

wG I GM � G xvð Þð Þ2

where G(xv) is the gradient map as described above, GM is a local

maximum value in the gradient image, and wG is a weight value for

the gradient term.

Cross-sections of the white matter surface with various levels

of correction for the insula region are show in Fig. 5. Without
subcortical segmentation, the WM surface is not properly fitted

in subcortical area (Fig. 5a). With subcortical segmentation, the

WM surface reconstructs the boundary of insula but there are

mismatched vertices due to misclassification in the subcortical

segmentation (Fig. 5b). The WM surface is corrected to a

qualitatively more likely boundary by means of adjustment with

a gradient image term (Fig. 5c).

Laplacian map

The human cerebral cortex is a thin layer of GM at the outer

surface of the brain and is topologically equivalent to a sheet.

Surface extraction methods that expand from the WM surface to

the pial surface have used an image term such as the local

gradient of the image so as to push the surface toward the

correct edge (Dale et al., 1999; Han et al., 2001a,b; MacDonald

et al., 1994). However, if the deforming surface is far from an

edge, or the direction to the edge is misleading, there may be

difficulty locating the edge correctly. In our study, the direction

towards CSF voxels is determined by a Laplacian map similar to

a map of boundary distance. If we give a minimum value to

WM voxels and a maximum value to the skeletonized CSF and

background, the computation of the Laplacian provides smoothly

increasing potential surfaces between WM and CSF. Its gradient

produces an expanding route for the pial surface similar to a

distance map, which labels voxels by the distance from the WM

surface, and guarantees topology preservation. The Laplacian

map has two major advantages over a distance map. First, the

Laplacian map always generates the same distance ratio from the

starting surface (a preset minimum value) to the ending face (a

preset maximum value) even though cortical thickness varies

across the cortex. Thus gradients of the Laplacian map in the

thicker parts of the cortex are smaller than those in the thinner

parts. We introduce a novel term to control the degree of

expansion of the pial surface by using the gradient of the

Laplacian map. In contrast to conventional approaches using

Laplacian maps, the pial surface is expanded slowly in regions

of thinner cortex and expanded faster in the thicker parts of the

cortex. This ensures that every vertex on the surface moves to

the outer boundary of GM at a uniform rate, proportional to the

local thickness. This is important in performance terms because
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Fig. 5. Subcortical segmentation and theWM surface of (a) ASP, (b) CLASP before correction, and (c) CLASP after correction. Note the fitted surface in regionA.
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vertices globally converge faster with the thickness constraint

than without the constraint. Moreover, if some of the vertices

were able to reach the final pial surface earlier than the others,

those vertices would be moved by other model constraint terms

such as the stretch and the self-intersect terms rather than the

Laplacian term. This may not only misplace the vertices from

the Laplacian map but also may terminate the iterations though
Fig. 6. Demonstration of the deformation route using (a) the Laplacian map, (b) th

surface. While the distance maps may lead neighboring vertices to collide as show

and reduces the collision.
some vertices are not expanded enough. The Laplacian map also

guarantees a one-to-one mapping between the two surfaces

without intersection of paths as shown in Fig. 6a.

Another important fact is that the stream lines of the

Laplacian map have characteristics similar to those of cortical

striations in that they are unique as well as non-intersecting and

thus seem better suited to capture cortical features than simply
e distance map from the WM surface, and (c) the distance map from the pia

n in region A of (b) and (c), the Laplacian map smoothly expands vertices
l
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using a distance map. The distance map between surfaces is also

not unique in that calculating the distance from the WM surface

outward (Fig. 6b) or from the skeletonized CSF inward (Fig. 6c)

can produce different values. Fig. 6b shows that vertices in the

region denoted ‘‘A’’ may not expand outward to the skeletonized

CSF and can map to the same location as they should but across

the bulge shown at A. In another situation, many vertices on the

pial surface may map to the same location on the WM surface

as shown in Fig. 6c (region A).

Constraints for expanding the GM surface

The CLASP algorithm uses a series of terms to achieve a

satisfactory match between the deforming surface mesh and the

GM/CSF interface in the volume image while adhering to the

shape constraints of the model.

Objective function

As with the conventional ASP, the CLASP algorithm uses an

objective function that is minimized in order to fit the model

constraints and image data. The domain of the function is the

set of vertex coordinates, and the range is a scalar value

representing the goodness of fit of the polyhedron to the target

data. The objective function, O(S), similar to the function used

in ASP, is defined generally as a weighted sum of (N = 4)

terms:

O Sð Þ ¼ ~
4

k ¼ 1

Tk Sð Þ;

where each term Tk(S) measures some aspect of the polyhedral

pial surface, S. The four terms of Tk(S) are TLaplacian defined by

the Laplacian map, Tintensity determining the boundary between

GM and CSF, Tstretch which equalizes the distance among

polygon vertices and Tself-proximity that prevents polygon inter-

section. Each term includes a weighting coefficient.

CLASP substitutes the Laplacian term and an intensity term for

the boundary distance term and the vertex–vertex proximity term

of ASP. Other terms for stretch and self-proximity are left as they

were. The following sections provide more detail about these

terms.

Laplacian term

The Laplacian term presented here is based on the Laplacian

map. The Laplacian map is generated by solving Laplace’s
Fig. 7. Shape of the Laplacian term: (a) the Laplacian term, (b) derivative of the La

Laplacian field.
equation, l2G(x̄v) = 0, in a grid volume G(x̄v), where x̄v is a

point in space. The grid volume is defined as follows:

G x
;
v

� � 0 if xv is inside of theWM surface

10 if xv is on the skeletonized CSF or background

5 otherwise

8<
:

Each vertex moves into the location of higher value in the

Laplacian map which is expressed mathematically as:

TLaplacian ¼ ~
nv

v ¼ 1

wL I L x
;
v

� �
� LM I dL x

;
v

� �� �
where nv is the number of vertices in polyhedral mesh, L(x̄v)is a

value of the Laplacian map at the location x̄v, and LM is the

maximum value of the Laplacian map. dL(x̄v) is the Euclidean

distance between vertex v on the expanding surface and its linked

vertex on the initial surface, that is approximately 1 and wL is a

weight value for the Laplacian term. In our study, the discrete

Laplacian map with a minimum value of 0 and a maximum value

of 10 is estimated by iterative Jacobi relaxation (Press and

Flannery, 1988), so values of the Laplacian map are always

positive and increase at a rate proportional to the distance between

the WM surface and the skeletonized CSF inside of the brain mask.

The movement direction, defined by the gradient of the Laplacian

term at each vertex, is calculated as:

TVLaplacian

¼ ~
nv

v ¼ 1

wL I � SIGN LV x
;
v

� �� �
I k LV x

;
v

� �Y

kþ LM

	 
	 

:

The relation between the Laplacian term and the distance from the

WM surface to the skeletonized CSF is shown in Fig. 7. Vertices

move slower in thinner cortex than in thicker cortex.

Intensity term

The intensity term determines the boundary between GM and

CSF while the Laplacian term determines expansion to that

boundary. As described in Reconstruction of the WM surface,

the Laplacian map is defined in the region between the WM

surface and skeletonized CSF voxels. The skeletonized CSF voxels

help define the morphology of sulci, however, they do not indicate

the boundary between GM and CSF (Fig. 3b). In order to find the

pial surface, the voxel tissue labels around each vertex are

examined. Vertices which lie within GM voxels continue to

expand, but vertices within CSF are clamped back to the nearest
placian term. The Laplacian constraint varies according to the derivative of a
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GM voxel along the expansion direction. The function, which

detects classified voxels and restricts the expansion, is a modifica-

tion of the vertex–vertex proximity term of ASP. In ASP, the

vertex–vertex proximity term constraints points on two surfaces to

be a certain distance apart. However, in CLASP, the intensity term is

only activated to shrink the vertices if vertices are found within

CSF. Otherwise, the term is inactivated and vertices are expanded

along the Laplacian map. The intensity term is defined by:

TIntensity ¼ ~
nv

v ¼ 1

wi I di x
;
v

� �
where nv is the number of vertices in polyhedral mesh, di is the

distance between vertex v on the expanding surface and its linked

vertex on the WM surface. wi is a weight value. This weight is zero

to inactivate the term if the vertex v is within CSF, otherwise, it

takes a constant value.

Stretch term

The stretch term measures lengths between vertices, and

increases if vertices are stretched or compressed relative to an

average length of the current pial surface.

Tstretch ¼ ~
nv

v ¼ 1

~
mv

j ¼ 1

ds x
;
v ; x

;
nv; j

� �
� L

L

0
@

1
A

2

where nv is the number of vertices in polyhedral mesh, mv is the

number of neighbors of vertex v, L is an average length of the

current pial surface, and ds is the distance between vertex v, x̄v, and

its neighboring vertices, x̄nv,j
.

Self-proximity term

The self-proximity term measures the proximity of pairs of

nonadjacent polygons in a surface,

Tself�proximity

¼ ~
np�1

i ¼ 1

~
np

j ¼ 1 þ 1

dmin Pi;Pj

� �
� di;j

� �2
; if dmin Pi;Pj

� �
< di;j

0; otherwise;

(

where np is the number of polygons, dmin(Pi,Pj) is the smallest

Euclidean distance between the ith polygon, Pi, and the jth

polygon, Pj, and di,j is a distance threshold. Pairs of adjacent

polygons are not included in the above equation, as the distance

dmin(Pi,Pj) is a constant zero value for any deformation of the

polyhedra in this case.

Selection of each weight

Weights for the model terms were experimentally selected. To

do this, 10 T1-weighted 3-D MRI datasets were randomly tested

with different weights for each of the constraints. The weights for

the Laplacian term and the intensity term were changed

individually while the weights for the stretch term and the self-

proximity term remained fixed. A voxel-based comparison

between cortical GM obtained by the classification procedure in

Classification and cortical GM defined between the WM/GM and

GM/CSF interfaces produced by CLASP with each of the various

parameter sets being evaluated using a Kappa statistic. Since

MacDonald already established the optimal weights for the stretch

and self-proximity constraints, we use the values he specified

(MacDonald et al., 2000). The weights for the Laplacian and

intensity constraints added in this paper were also evaluated.
After many empirical tests, the ranges of the weights were limited

to 10�4–10�2 and 10�8–10�4 for the Laplacian and intensity

constraints, respectively. First, we fixed the weight of the

intensity constraint at 10�7 and changed the weight of the

Laplacian constraint. Next, the weight of the intensity constraint

was changed with the best weight for the Laplacian constraint

fixed. Finally, 10�3 and 10�6 were selected for the Laplacian and

intensity constraints, respectively.
Evaluation

To evaluate the CLASP algorithm, we used T1-weighted

images of 70 pediatric brains with tightly folded gyri, possessing

an age range of 16 T 2.8, each of 1.0 mm 	 1.0 mm 	 1.0 mm

resolution and 181 	 217 	 181 voxel dimension. In each brain,

the pial surface was extracted by both the CLASP and the ASP

methods. The accuracy of each method was evaluated by both

volume- and surface-based comparisons as detailed below. In

addition, a repeatability test was performed with 16 MRI scans of

the same subject.

Volume-based comparison

In the volume-based evaluation, we compared classified

cortical GM with voxels in between the GM and WM surfaces.

This comparison evaluated fidelity based on input information to

CLASP and ASP because they both extract cortical surfaces

based on classified volumes. It is possible that the reconstructed

surface does not exactly represent the GM/CSF boundary not

only in sulci but also in gyri because of the distance between

adjacent vertices and local minima in the optimization. Thus, in

this section, we evaluated how well the GM surface was

expanded to the gyri. The surface in buried regions is evaluated

in the next sections.

After extracting cortical surfaces a GM map was created by

resampling the surfaces to a 1 	 1 	 1 mm volume and filling in

voxels between theWMand GM surfaces for both ASP and CLASP.

The classified GM maps were masked such that only cortical gray

matter voxels were present. The two GM maps from the

classification and the surface extraction were then overlapped and

compared.

In the overlapped volume, three statistics were used: (1)

percentage of matched GM voxels to total voxels between the

classified image and the surface-masked image (True-Positive,

TP), (2) percentage of background voxels not identified by surface

masking but classified as GM voxels (False-Negative, FN), and (3)

percentage of voxels identified as GM by the surface-based method

but classified as background (False-Positive, FP). Equations for the

three statistics are:

TP ¼ ~
NGv

v ¼ 1

Gc vð Þ IGs vð Þ
NGv

	 100

	 

;

FN ¼ ~
Nv

v ¼ 1

Gc vð Þ � Gc vð Þ IGs vð Þ
Nv

	 100

	 

;

FP ¼ ~
Nv

v ¼ 1

Gs vð Þ � Gs vð Þ IGc vð Þ
Nv

	 100

	 

;



ARTICLE IN PRESS

Table 1

Volume-based evaluation for pediatric brains

TP FN FP

(1) Conventional ASP

(matched voxels to

whole voxels)

58.1% 4.8% 18.7%

(2) Laplacian-based

ASP (matched voxels

to whole voxels)

71.1% 3.3% 0.8%

Difference rate of

(2)– (1)

13%

(increased)

�1.5%

(decreased)

�17.8%

(decreased)

t test probability 0.00071 0.00035 0.000006
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where v is the voxel index, Nv is the total voxel count in a volume,

NGv is the number of INSECT GM voxels, and GC(v) and GS(v)

are GM voxel maps (values of GM voxels are 1 and values of other

voxels are 0) of the classified volume and surface-masked

volumes, respectively.

Cross-sectional GM voxel maps produced for a single

individual by each method are shown in Figs. 8a–c, while

maps showing differences between classified and surface GM

are also shown in Figs. 8d–f. Fig. 8e shows less difference

voxels than Fig. 8d. Fig. 8f displays GM voxels which are

extracted by CLASP but not by ASP. To create the surface

masks a scan line filling algorithm was used to resample the

surfaces to voxel space. This causes voxels on the surface to

receive a GM label regardless of how much of the surface

actually encapsulates a boundary voxel, which may result in a

higher FN rate. CLASP showed a 13% improvement in accuracy

in terms of GM matching compared with the conventional ASP

as shown in Table 1. Note that the FP errors are largely reduced

in CLASP (0.8%) compared with conventional ASP (18.7%).

Since CLASP and ASP algorithms use classified volumes as

input, they do not reconstruct the subcortical region, cerebellum,

and brain stem correctly. Thus, those non-cerebral voxels reduce

TP ratios.

Although the volume-based comparison evaluates how the

surfaces reconstruct cerebral volume, it does not specifically show

an improvement in the extraction of deep sulcal regions. We thus

introduce additional comparisons to evaluate accuracy and precision

in the next sections.
Fig. 8. Extracted GM voxel maps and difference voxel maps: (a) GM by INSECT,

and ASP [(a)– (b)], (e) a difference map between INSECT and CLASP [(a)– (c)], an

of (e) are less than voxels of (d).
Surface-based comparison

It is difficult to define a gold standard for MRI surface

reconstruction, as it is virtually impossible to produce surface

meshes from volumes that could be defined as ‘‘ground truth’’. In

order to circumvent this problem, we made use of the surface

extraction output of another algorithm to generate volumes where

the ground truth boundaries for the WM and pial surfaces are

known. While the phantom surface might not be a true gold

standard, this approach provides surfaces that will have many of

the important features of a real cortex and not be biased by one

of the algorithms under study.

For the surface-based evaluation, it is required to make MR

images from the phantom surfaces since the CLASP and ASP
(b) GM by ASP, (c) GM by CLASP, (d) a difference map between INSECT

d (f) a difference map between CLASP and ASP [(c)– (b)]. Note that voxels
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Fig. 9. Surface-based evaluation: (a) the conventional ASP, (b) the CLASP.

The red line is the outer cortex of the phantom, while the green line is the

surface re-extracted from the simulated MRI of the phantom. Voxels of

which the GM surface by ASP or CLASP fits the phantom are shown as

black color. Note the improved match between the red line and the green

line.
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procedures start from an MRI. We used an MRI simulator which

generates a realistic MR image incorporating partial volume

effects and noise from a phantom tissue volume (Collins et al.,

1998; Kwan et al., 1996). The surface-based evaluation was

divided into several steps as follows:

(1) Pial and WM surfaces were first estimated using another

surface reconstruction algorithm (FreeSurfer) (Dale et al.,

1999). Surfaces from the software were used as a standard

to be compared to the CLASP surfaces extracted from

simulated MRI although the FreeSurfer surface did not

mean ‘‘ground truth’’.

(2) The surfaces were linearly expanded with an experimentally

chosen scaling factor of 1.2. The conventional ASP showed a

tendency to incorrectly estimate the pial surface in cortex

thicker than a given thickness range, so the surfaces were

scaled up and evaluated to determine if this problem was

solved using CLASP.

(3) A phantom including 4 labeled tissues (GM, WM, CSF, and

background) was created from the surfaces. WM voxels were

defined inside of the WM surface, and GM voxels were set

between the pial and WM surfaces. To create partial volume

effects, voxels on the pial surface were given partial volume

fractions of 75% for GM and 25% for CSF. Fractions of 75%/

25% were selected because these were middle numbers

between no partial volume effect (100%/0%) and an

ambiguous evenly mixed status (50%/50%). CSF voxels

were also defined in the voxels between the inside of the

exterior brain mask and outside of pial surface to simulate

extra-pial CSF. All other voxels were set to a background

label.

(4) The MRI simulator was given parameters of TR = 18 ms,

TE = 10 ms, slice thickness = 1 mm, the same resolution and

volume size as the original classified image, in the simulation

of a T1 MR image from the phantom.

(5) Using the simulated MR image, the pial surfaces were

reconstructed by ASP and CLASP.

(6) Finally, we measured the distance between the two surfaces

resulting from (2) and (5), based on the average Euclidean

distance from the vertices of the phantom surface to the

nearest vertices of the recreated surface.

The ASP algorithm had a much higher average error (4.3 T 1.6

mm) than did CLASP (0.6 T 0.6 mm). This evaluation was

performed on a scaled phantom volume to synthesize thick cortex,

so the difference indicates that ASP would likely have more

difficulty in finding the correct boundary in thick cortical areas

when compared to CLASP. Even though we introduced partial

volume effects for voxels on the pial surface, the voxels were

classified as GM because of the higher GM fraction. It was thus

difficult for ASP to find the real boundary in the folded sulci. Also,

ASP approximates the boundary in these regions by means of the a

priori vertex–vertex constraint, while CLASP makes use of a PV

classification, resulting in better correspondence with the ‘‘ground

truth’’ boundary. Fig. 9 demonstrates the difference between

surfaces before and after MRI simulation. The extraction by

conventional ASP resulted in a poorly expanded surface compared

with the phantom mesh because of the vertex–vertex constraint, as

shown in Fig. 9a. The CLASP surface, by contrast, is expanded

better, as shown in Fig. 9b.
Evaluation of repeatability

This section examines the reproducibility of the whole

procedure including classification and surface extraction. In order

to quantify the normal variance expected for reconstructing cortical

surfaces, 16 different T1 MRIs with 1 mm isotropic sampling were

acquired from the same subject over a short period of time (Holmes

et al., 1998) and were averaged to create a template image. The

pipeline for reconstructing cortical surfaces as described in this

paper was run on each acquisition.

The root mean square (RMS) distance between the cortical

surface of the averaged template and each surface for the 16 MRIs

were measured (Fig. 10). Averages RMS errors from the 16 scans

were 0.59 mm, 0.85 mm, 0.61 mm, and 0.66 mm for the GM

surface of CLASP, the GM surface of ASP, the WM surface of

CLASP, and the WM surface of ASP, respectively. Compared with

the ASP algorithm, the CLASP algorithm reduced the RMS error

in the repeatability test by 31% and 8% for GM and WM surfaces,

respectively.

Qualitative demonstration

One of the major applications for cortical reconstruction is to

measure cortical thickness. We proposed the method to find buried

sulcal CSF voxels using partial volume estimation. This approach

might result in regionally different measurement of cortical

thickness. This can be seen by the distance between adjacent

regions on the WM and pial surfaces shown in Fig. 11. The GM

and WM surfaces of CLASP are properly fitted on the GM

boundary while the GM surface of ASP misses the boundary

between CSF and GM and even intersects the WM surface.
Discussion and summary

We have described a novel Laplacian-based modification of the

ASP surface extraction algorithm, which we have shown to be

more accurate at finding the boundaries of the cerebral cortex

compared with the original ASP method. The main difference is
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Fig. 10. RMS of distance between the surface of an averaged MRI and each surface of 16 scans. Note the reduce RMS errors for the CLASP surfaces.
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that the algorithm makes use of a partial volume classification to

insure topology preservation. Another difference is that it classifies

subcortical structures with SPAMs to reconstruct the insular region

properly. The accurate estimation of the outer surface of the

cerebral cortex is important in measuring cortical thickness, but is

made difficult because of partial volume effects. The conventional

ASP was based on a hard classified volume, and boundary voxels

in the deep sulci were often classified as GM though the voxels

have some fraction of CSF. ASP estimated the boundaries of the

sulci by incorporating a boundary constraint and a vertex–vertex

constraint which limited the allowable cortical thickness. However,

cortical thickness varies considerably by age and disease and thus

these thickness limitations needed to be relaxed. The CLASP

algorithm introduced in this paper overcomes these problems by

incorporating a PVE classification as input to guide the deforma-

tion model. The topology of the cerebral cortex is preserved

because the pial surface is expanded using a Laplacian field where

the upper boundary of the field represents the partial volume CSF

surface. Using volume- and surface-based evaluations showed
Fig. 11. Cortical surfaces of (a) ASP and (b) CLASP. There are intersections

between WM and GM surfaces in ASP. Note that the surfaces of CLASP

represent the cortical boundary better than ASP.
improved reconstruction of the outer cortical surface. Another

improvement of this study was to use a Laplacian map with a

thickness constraint. Gradient values of the Laplacian map express

how thick GM is on the surface vertices. The vertices were

expanded with different ratio of movement so that all vertices were

able to reach the final pial surface at the same time.

CLASP does not require any assumptions about or constraints

on cortical thickness as opposed to conventional ASP, so the

algorithm is robust to variations of cortical thickness and topology.

Moreover, CLASP still retains the following features from ASP:

(1) the use of proximity constraints excluded self-intersecting

surface configurations; (2) the stretch constraint had the polygon

vertices evenly distributed; and (3) A 1:1 correspondence between

polygon vertices on a sphere to the boundary surfaces, allowing

efficient transformation and mapping of the vertices reciprocally.

It is hard to define a gold standard for surface reconstruction.

Even comparisons with manually chosen landmarks in an MR

image are affected by subjective decisions about which structures

to choose and ambiguity in about the extent of buried sulci. We

thus have introduced automated and objective methods for the

evaluation. Although the volume-based and surface-based evalua-

tion methods are affected by image resolution and the properties of

the MRI simulator, they do provide a good basis to evaluate

relative performance. In addition, the repeatability evaluation using

16 scans of one subject provides a relatively objective and

unbiased evaluation of precision.

In summary, the intrinsic advantage of the CLASP algorithm

compared with conventional ASP arises from its use of geometric

information based on a probabilistic classification, allowing partial

volume effects to be accounted for. This algorithm expands the pial

surface from the WM surface and robustly reconstructs the surface

while preserving the topology of the cerebral cortex. The

reconstructed surfaces created by CLASP guarantee a more precise

extraction and thus allows for a more detailed analysis of subtle

cortical morphological features. This more general applicability of

CLASP is important for studies of pediatric brain development and

cortical degeneration in brain disease. The advantage of the
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CLASP algorithm is to uses simple geometric constraints and is

based on neuroanatomical knowledge, resulting in surfaces that

provide a valuable model for morphological experiments.

In the future, the comparison of CLASP to other cortical surface

reconstruction methods to assess its strengths and weaknesses in

terms of measuring cortical thickness, functional brain mapping,

visualization, surface labeling, and other applications would be of

great utility.
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