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We have previously developed a procedure for measuring the thickness

of cerebral cortex over the whole brain using 3-D MRI data and a fully

automated surface-extraction (ASP) algorithm. This paper examines

the precision of this algorithm, its optimal performance parameters,

and the sensitivity of the method to subtle, focal changes in cortical

thickness.

The precision of cortical thickness measurements was studied using a

simulated population study and single subject reproducibility metrics.

Cortical thickness was shown to be a reliable method, reaching a

sensitivity (probability of a true-positive) of 0.93. Six different cortical

thickness metrics were compared. The simplest and most precise

method measures the distance between corresponding vertices from the

white matter to the gray matter surface. Given two groups of 25

subjects, a 0.6-mm (15%) change in thickness can be recovered after

blurring with a 3-D Gaussian kernel (full-width half max = 30 mm).

Smoothing across the 2-D surface manifold also improves precision; in

this experiment, the optimal kernel size was 30 mm.

D 2004 Published by Elsevier Inc.

Introduction

The measurement of cortical thickness has long been of interest

to the neurosciences, starting with the early reconstructions of

Brodmann (1909) and von Economo and Koskinas (1925). Recent

advances in image processing and image acquisition has allowed

for the automatic extraction of cortical thickness from MRI (Fischl

and Dale, 2000; MacDonald, 1997; MacDonald et al., 2000). This

paper investigates and summarizes current methodology and

evaluates the power and sensitivity of the different techniques.

The study of the morphometry of the cerebral cortex at the

macroscopic level visible in current MRI provides the neuro-

sciences with an opportunity to investigate both normal and

abnormal change. Most such investigations use a combination of
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semiautomatic techniques, usually focusing on the manual

delineation of structures of interest, followed by statistical

comparisons of volumes (cf. Pruessner et al., 2001). This approach,

while clearly quite capable of providing important information

about the population under investigation, has several disadvan-

tages. It is very labor intensive, it suffers from intra- and interrater

reliability issues, and most importantly, it restricts the analysis to

predetermined regions of interest.

Several fully automated approaches have also been developed;

the most widely used of these is voxel-based morphometry (VBM)

(Ashburner and Friston, 2000). At its most generic, VBM is the

comparison of voxels in a series of linear models. Most methods

(cf. Ashburner and Friston, 2000; Baron et al., 2001; Paus et al.,

1999) employ a standard set of image processing steps involving

linear registration, tissue classification, and creation of bvoxel
densityQ maps representing tissue concentration in a local

neighborhood. The usual end result is an image that contains

regions that have significantly increasing or decreasing signal that

correlates with some independent neurobiological parameter. This

latter parameter may be just a categorical difference between two

groups, for example, separated by disease status or gender, or more

generally, will be a continuous variable, such as age or behavioral

performance, in which case a regression of image signal against

that variable is plotted at each voxel (Paus et al., 1999; Wright et

al., 1995).

Cortical thickness analysis is similar to VBM, albeit the

analysis is performed at the nodes of a three-dimensional

polygonal mesh rather than on a 3-D voxel grid, but it has the

advantage of providing a direct quantitative index of cortical

morphology. The metric captures the distance between the white

matter surface and the gray CSF intersection according to some

geometric definition; the output is a scalar value measured in

millimeters. The regression slope at each vertex across the cortex in

a statistical analysis is meaningful: not only can one determine that

cortical thickness is significantly different between groups, but one

can also measure that difference. This naturally leads to the ability

to define clinical as well as statistical significance.

The use of cortical thickness analysis in MRI studies is

relatively new, with only a small number of studies published on

the methodology (Fischl and Dale, 2000; Jones et al., 2000; Kabani



J.P. Lerch, A.C. Evans / NeuroImage 24 (2005) 163–173164
et al., 2001; MacDonald, 1997; MacDonald et al., 2000; Meyer et

al., 1996; Miller et al., 2000; Tosun et al., 2001; Yezzi and Prince,

2003; Zeng et al., 1999) and even fewer on normal or abnormal

populations (Fischl and Dale, 2000; MacDonald et al., 2000; Rosas

et al., 2002). This is due to the difficult nature of extracting the

inner and outer surfaces of the cerebral cortex at the limited

resolution provided by today’s MRI machines (usually 1 mm3),

where the fine details of sulcal anatomy are often obscured by the

partial volume effect. Moreover, manual delineation of cortical

thickness is very difficult (whether from MRI or postmortem

samples) due to the necessity of creating a correct cut or slice plane

perpendicular to the surfaces.

Defining cortical thickness, even when models of the inner and

outer surfaces are present, is not trivial. Cortical thickness is a

distance metric but there are multiple ways of defining correspond-

ing points on the two surfaces between which that distance is to be

measured. Moreover, the distance need not be measured in a

straight line but can be the result of a more complicated equation,

such as fluid flow lines.

This paper examines the power of cortical thickness as an

analysis tool; it compares the various definitions of cortical

thickness proposed in the literature; the effect of different size

blurring kernels; and analyzes the effect of correcting for multiple

comparisons. These studies were performed using a simulated

population study where the true difference between the two groups

is artificially induced and therefore known. Furthermore, repeat

scans of a single subject will be used to examine the variability

inherent in the different cortical thickness metrics and make a first

attempt at defining the power of the method.

Rather than addressing accuracy we focus on the question of

precision. The distinction between the two is subtle but crucial:

Accuracy: The ability of a metric to capture the correct distance

between the pial and white matter surfaces, as defined by

anatomical criteria and validated through manual measurements

or accurate MR simulations.

Precision: The ability of a metric to provide reproducible results

from repeated estimations and thereby differentiate between two

measures known to be different.

A metric can therefore be declared most accurate through the

comparison of automated and manual measurements, or through

directly simulating a cortical sheet with a known thickness and

validating each metric against such a construct. Each of these

methods has to overcome significant challenges. Manual measure-

ments of cortical thickness are tremendously difficult to undertake,

being highly dependent on a perfectly perpendicular cutting angle.

Moreover, even using the exact same postmortem slice, individual

raters can easily differ by over 0.5 mm at any one location due to

the blurred cortical boundary at the white matter surface (von

Economo and Koskinas, 1925). Furthermore, the traditional

thickness measurements derived from postmortem slices are

dependent on a straight-line measurement of cortical thickness,

as these measurements are always carried out in two dimensions.

Accurate validation of MR measurements of cortical thickness thus

requires a three-dimensional reconstruction of high-resolution

postmortem data. The alternative of validation through construc-

tion of a cortical sheet with known thickness is very attractive but

difficult to use in comparing thickness metrics. The reason is that

the construction of such a cortex would be dependent on a

preexisting definition of cortical thickness and would therefore be

biased towards that metric from the beginning. Furthermore,

accurately simulating MRI from polygonal models of the cortex
has to first address the issue of correctly incorporating partial

volume into the tissue model. We plan to address the question of

accuracy both through the use of a simulator as well as high-

resolution postmortem reconstructions; that, however, is the subject

of future work. This paper examines the precision of cortical

thickness analysis through the use of repeated acquisitions of the

same subject as well as a population simulation.
Methodology

Measuring cortical thickness

Measuring cortical thickness is a complex process involving

multiple image processing steps. The native data, usually consist-

ing of a T1 MRI per subject but optionally includes any number of

modalities. These one or more images of the brain parenchyma are

used to provide an anatomic label for each voxel (typically this

means classification into gray matter, white matter, CSF, and

nonbrain classes). Prior to this classification step, intensity and

spatial normalization must be performed. Intensity correction for

nonuniformity is obtained using the N3 algorithm (Sled et al.,

1998); spatial normalization is done to the ICBM 152 average

using a nine parameter linear registration (Collins et al., 1994). If

there is more than one image per subject, any additional MRIs are

registered to the first MRI using mutual information registration

(Collins et al., 1994).

Each subject’s brain is classified into white matter, gray matter,

CSF, and background using all available imaging modalities and a

classifier trained by stereotaxic space probability maps (Kollokian,

1996; Zijdenbos et al., 2002). These probability maps were created

from 305 classified samples; 1000 points per tissue class were

randomly chosen from areas having a greater than 90% chance of

being of the correct tissue type in that location in stereotaxic space.

Prior to classification, the training tag points are pruned for each

individual subject to remove any outliers.

The inner and outer cortical surfaces are then extracted using

the automated surface-extraction (ASP) algorithm (MacDonald et

al., 2000). The essence of ASP is the creation of simple (non-self-

intersecting) surfaces with spherical topologies using deformable

models. The classified volume is taken as input, and the process

begins with the deformation towards the white matter surface.

Along with the image information, Tboundary-dist, several model

terms are used to constrain the fit, and self-intersection is explicitly

prohibited. The model terms are: Tstretch, constraining distances

between neighboring vertices; Tbend, constraining deviation from

model shape; and Tself-proximity, constraining the proximity of pairs

of nonadjacent polygons. The gray matter surface is obtained using

the same constrains as listed above along with Tsurface–surface,

preventing the two surface from coming within a certain distance

of each other, and Tvertex–vertex, which penalizes corresponding

vertices as they deviate from an ideal distance. This last constraint

allows for sulcal penetration of the gray matter surface even when

the sulcus in question has been obscured due to partial volume

blurring of the CSF space.

The creation of the two surfaces then allows for the measuring

of cortical thickness using various distance metrics. They are

summarized in Table 1 and described in more detail below.

The first method is tlink. It is conceptually very simple,

measuring the distance between linked nodes on the inner and

outer surface. The correspondence between such nodes is created



Table 1

Description of cortical thickness metrics used in this study

Name Description Citation

t link Distance between

linked nodes

MacDonald et al. (2000)

tnear Distance to

nearest node

MacDonald et al. (2000)

tnormal Distance along

surface normal

MacDonald et al. (2000)

t layered-normal Distance along

iteratively computed

normal

NA

taverage-near Distance to nearest

node computed twice,

averaged

Fischl and Dale (2000)

t laplace Distance solved using

Laplace’s equation

Jones et al. (2000)

Fig. 2. An illustration of the rSTG thinning procedure. Green is gray matter,

white is white matter, and gray is the gray matter that was removed in the

bpatientQ population.
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by the expansion of the outer surface from the inner surface, each

polyhedron having the same topology and number of vertices. This

method is inherently very robust: the model constraints that govern

the expansion will guarantee low variability, minimizing large

errors and outliers. However, there is no guarantee that the linked

method will produce a distance measure corresponding to what an

anatomist would chose.

The tnear method performs a simple search across the opposite

surface and picks the vertex that is the shortest (Euclidian)

distance away. While intuitive, this method has the potential for

gross errors, such as jumping across gyri, as there is no guarantee

that the nearest point is the anatomically most sensible one. The

tnormal constrains the point that can be found to lie along the

intersection of the surface normal. The tlayered-normal creates a

series of nested surfaces first by a process of weighted averages

of the inner and outer surfaces evaluated between corresponding

nodes on each surface. The surface normal is computed at each of

these nested surfaces and then averaged, thereby producing a

constraint for finding the corresponding point on the opposite

surface that is less prone to producing outliers than the simple

surface normal. The taverage-near, first published in Fischl and Dale

(2000), computes tnear twice, once from the outside to the inside

surface and once from the inside to the outside surface. These

two values are then averaged to produce a thickness value at that

node.

The last method is tlaplace, first published in Jones et al. (2000)

and reimplemented locally. Two boundaries, the white matter

volume and the extracortical volume as defined by the two surfaces
Fig. 1. An illustration of the difference between the geometry preserving diffusion

employed 3-D volumetric blurring kernels. The FWHM was set at 30 mm in bot

motor and sensorimotor areas are influenced by the volumetric kernel but not by
extracted using the ASP algorithm, are defined and fixed. Laplace’s

equation, shown in Eq. (1), is then iteratively solved across the

entire volume using the Jacobi method. Iterations continue until the

change across each iteration becomes smaller than a preset

threshold. Gradients are then computed using two point differences

and the gradient vectors normalized to produce tangent vector

fields. Streamlines are computed at every voxel in the cortical

volume by integrating towards each of the boundaries using

Euler’s method, and the two path-lengths added together to

produce a thickness value at that point.

D2W ¼ B
2W
Bx2

þ B
2W
By2

þ B
2W
Bz2

ð1Þ

Eq. (1): Laplace’s equation

The final step before analysis is blurring the thickness data. A

surface-based diffusion smoothing kernel is used, which general-

izes Gaussian kernel smoothing and makes it applicable to any

arbitrary curved surface (Chung et al., 2002). It has to be

remembered that this blurring kernel used on the surface has a

different meaning from the standard volumetric kernels since

surface curvature is followed as illustrated in Fig. 1.

The arguments for blurring are fourfold:

1. By the central limit theorem, smoothing has the effect of

rendering the data more normally distributed, thereby increas-

ing the validity of statistical tests.

2. It reduces the impact of imperfect alignment between cortices

by replacing individual vertex values with neighborhood

averages.
smoothing blurring over a 2-D surface manifold and the more commonly

h cases. One can see how anatomically disparate areas such as the inferior

diffusion smoothing.



Table 2

Epidemiological statistics used in this study

Test

+ �
True state + a b

� c d

Sensitivity: a / a + b (probability of a true-positive). Specificity: d / c + d

(probability of a true-negative). True-positive: positive test where true state

is positive. True-negative: negative test where true state is negative.

Sensitivity: probability of a true-positive. Specificity: probability of a true-

negative.
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3. It reduces noise in the measurement of cortical thickness. The

fact that the average cortex is only a few voxels thick leads to

some variability in thickness measures due to the inadequate

MRI sampling. By averaging neighboring vertices in the

diffusion smoothing operation, this noise is reduced.

4. Since blurring increases the interdependence of the neighbor-

ing vertices, it also reduces the number of comparisons to be

controlled for using random field theory (see Statistical

analysis section).

These improvements in signal-to-noise and statistical normality

are of course obtained at the cost of a degradation in image

resolution in the classical image analysis trade-off. The choice of

optimal blurring kernel width is discussed below.

Statistical analysis

Once the thickness maps have been generated and optionally

smoothed for each subject, statistical tests can be performed. A linear

model is applied separately at each vertex t: Y(t) = Xb(t) + e(t),
where Y(t) is the measure of cortical thickness, X is the matrix of

explanatory variables, b represents the slope to be estimated for each

explanatory variables, and e(t) is the normally distributed error. A

series of statistical tests, such as a t, F, or adjusted R2 values, can be

applied. The regression slope, b, can also be plotted at every vertex.
The ability to derive meaning out of the regression slope is one of the

key strengths of cortical thickness analysis since that slope can be

expressed as millimeters change. Accurate estimation and interpre-

tation of the slope will be influenced by the kernel used since

blurring causes thickness to be estimated across areas of cortex

rather than individual vertices. There is thus potential for under-

estimation of local change should the kernel size be too large.

The challenge, also faced by VBM and functional imaging

techniques, is to correct for the multiple comparisons that are
Table 3

Means, standard deviations, and power analyses for cortical thickness and metric

19 scans of same subject

Mean SD Nrm. SD d (%)

tnear 2.46 0.21 0.09 21

tnormal 4.39 0.50 0.11 28

t layered-normal 3.99 0.28 0.07 18

taverage-near 2.53 0.18 0.07 18

t laplace 3.71 0.27 0.07 18

t link 3.93 0.22 0.06 14

Where d is the minimum percentage change that can be recaptured when n = 25,

normalized standard deviation. All comparisons made using 30 mm blurring kern

theory (t = 4.67).
undertaken in the analysis. For the cortical thickness analysis

experiments described here, the number of nodes in the cortical

mesh resulting from ASP is 40962. The most common method

to control for multiple testing is to adjust the required

significance threshold such that type I error is controlled for

across the entire brain. The by now default method for such

correction uses random field theory thresholding (Worsley et al.,

1992, 1996), which takes the smoothness of the data into

account in determining the number of resels, thereby reducing

the effective number of tests to be controlled for. The resulting

threshold states that in an area where the null hypothesis is true,

the chance of rejecting one or more of the tests is less than or

equal to a, the preset level of confidence. This type of control is

quite stringent, providing the benefit that vertices where the null

hypothesis is rejected are highly likely to be true-positives but

also leaves a high likelihood of false-negatives. Implementation

of random field thresholding on the surface is made more

complex by the nonisotropic nature of the images. The solution

is to estimate the effective FWHM (eFWHM) (determined

through the normalized residuals of the fitted model) along the

edge of each vertex and to warp (in a statistical sense) the

coordinates of each vertex so that the eFWHM is approximately

constant (Worsley et al., 1999).

Analyzing the variance

In order to quantify the normal variance expected for cortical

thickness estimation, 19 different T1 MRIs with 1 mm isotropic

sampling were acquired from the same subject over a short period of

time (Holmes et al., 1998). The cortical thickness pipeline as

described above was run on each acquisition. All the different

metrics were used, each blurred with different sized kernels. Means

and standard deviations were computed both at every vertex along

with each subject’s mean thickness. A normalized standard deviation

map was produced by dividing the standard deviation by the mean at

each vertex. The procedure was then repeated for 25 normal subjects

taken from the ICBM database (Mazziotta et al., 2001) in order to

capture the variance inherent in a normal population.

Power calculations were performed on both sets of data. The

standard deviation of cortical thickness was modeled at every

vertex to answer the questions:

1. What n is needed in order to recapture a change of x

millimeters?

2. Given two equal groups of n subjects each, what change can

be recaptured?
s

25 normal subjects

n Mean SD Nrm. SD d (%) n

20 2.38 0.36 0.15 38 52

31 4.30 0.70 0.16 41 59

15 3.95 0.47 0.12 30 34

15 2.48 0.31 0.13 31 37

15 3.63 0.44 0.12 30 35

11 3.88 0.35 0.09 22 21

and n is the change that can be recaptured when d = 25%. Nrm. Std is the

el, P = 0.05 after correction for multiple comparisons using random field



Fig. 3. Normalized standard deviation across different thickness metrics and

blurring kernels. The two leftmost columns show the normalized standard

deviation across different metrics, first in 19 scans taken of the same

subject, second across 25 normal subjects. The last column shows the

change in normalized standard deviation across blurring kernels, using the

t link method and 19 scans of the same subject.

Fig. 4. Graph of normalized standard deviation across blurring kernels,

using the tlink and t laplace methods computed in 19 scans of the same subject.

There is a similar pattern to the one seen in the figure—a decrease up to a

kernel size of 40 mm followed by increasing standard deviations, once

again indicating that the optimal blurring kernel for minimizing variance is

in the 35- to 40-mm range.
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For both cases, the significance level (type I error probability) was

set to 0.05 and the power (1—type II error probability) at 0.95

multiple comparisons corrected for with random field theory. The

interpretation of the results is dependent on the blurring kernel: in

the unblurred data, we are looking at the sample size needed to

recapture a change of a certain magnitude, where that change is

isolated from any neighbors. The addition of blurring, however,

modifies the value at each vertex to reflect a weighted neighbor-

hood average.

Population simulation

The goal of many imaging studies in neurology is to assess

morphometric differences between two populations. In order to

evaluate the utility of cortical thickness analysis in such a

scenario, an artificial bpatientQ population was created through

induced thinning of the cortex. Fifty subjects from the ICBM

(Mazziotta et al., 2001) database were taken. All the MRIs

were corrected for nonuniformity artifacts, linearly registered

into stereotaxic space, and classified into their component tissue

types, all as described above. Twenty-five of these subjects

were randomly chosen and designated as patients. In this

group, the MRIs were segmented using ANIMAL (Collins et

al., 1995) and the right superior temporal gyrus (rSTG)

arbitrarily chosen for thinning. Thinning was induced through

a six neighbor dilation of the white matter into the rSTG as

defined by ANIMAL (see Fig. 2). The cortical surfaces were

then fit on all subjects and cortical thickness measured with

each of the available metrics. Statistical analysis was performed

at every vertex to assess if the induced change can be

recaptured. Prior to the induced thinning, the two populations

were compared and no statistically significant differences were

found (P N 0.3).
In order to evaluate the performance of the different metrics and

blurring kernels, the standard epidemiological terms true-positives,

false-positives, true-negatives, and false-negatives were defined

(see Table 2). The definition of truth for the purposes of this

simulation was based on the probability map of the rSTG. Since

the rSTG is the site of the induced thinning, it should also be the

area exhibiting significant results. The rSTG was defined

individually for each subject, however, and is not perfectly aligned

in stereotaxic space. Hence, a probability map was created for the

rSTG in which each vertex value represented the proportion of

subjects for whom that vertex was labeled as rSTG. Truth, for the

purposes of the simulation experiment, was thus defined as a

statistically significant vertices that intersect the rSTG probability

map.
Results

Variability

The standard deviation of cortical thickness was measured at

each point on the cortex in repeated scans across one subject as

well as across a normal population. The results across metrics are

summarized in Table 3.

Variability differs across different cortical thickness metrics

The tnormal has the highest standard deviation, taverage-near the

lowest. Due to the different definitions for the thickness metrics,

the mean thickness is quite variable across the different methods,

ranging from a high of 4.39 mm in tnormal to a low of 2.46 mm in

tnear (which by definition must have the lowest value). After

normalizing to account for these differences by dividing the

standard deviation with mean thickness, tnormal once again has the

worst performance, tlink the best. The same pattern emerges

whether these metrics are investigated across repeat scans of one

subject or across 25 different young normals (see Table 3).
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Variability is not uniform across the cortex

Variance in thickness differs dependent on location in the

cortex, being highest along the superior aspects of the central

sulcus, lowest in the prefrontal cortex; see Fig. 3, which shows

the standard deviation of cortical thickness at each vertex in

both 25 normal subject as well as the 19 repeated scans of a

single subject. Standard deviation is marginally related to

cortical thickness at any vertex (R2 = 0.0005). Normalizing

the standard deviation increases the effect (R2 = 0.06). Thinner

cortical areas are thus more variable than their thicker counter-

parts, though thickness itself only explains a small part of the

heterogeneity of variability. While the overall magnitude of the

deviation varies across metrics, the spatial pattern is similar. As

seen in the right hand column of Fig. 3, the pattern of

variability remains stable across blurring kernels, even as the

overall variability decreases with increased smoothing. The

exception to this rule is that at high blurring kernels the

representation of noncortical areas (such as the brain-stem cut)

where cortical thickness measurements are meaningless and
Fig. 5. An illustration of the power of the tlink method, standard deviation computed

of 0.27 mm (computed from the single subject variance shown in Table 3). The top

size delta. The bottom graph shows the size delta that can be recovered given two e

mm change can be recovered; in two small groups (n = 20), a 1-mm change wo
therefore highly variable begins to influence the standard

deviation of their cortical neighbors.

Variability declines with increased blurring—up to a point

Normalized standard deviation (SD / mean) declines with

blurring up to a 40- to 50-mm kernel, after which it increases

again, as shown in Fig. 4. This increase appears to be due to an

increased spatial representation of the noncortical areas. Nor-

malized standard deviation in cortical areas spatially removed

from noncortical regions continues to decline with increased

blurring.

Power calculations

Power calculations for the different metrics are given in Table 3

and illustrated for the tlink metric in Fig. 5. Given two groups of

more than 100 subjects each, a change of 0.29 mm can be

recovered. Conversely, given two small groups of 20 subjects each,

a change of 1 mm would reach statistical significance. These

numbers assume random field theory corrections for multiple
after application of a 30-mm blurring kernel and using a standard deviation

graph shows the number of subjects needed to recover a thickness change of

qual groups of subjects of size n. One can see that given an n N 100, a 0.35-

uld reach significance.
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comparisons. Since power calculations are dependent on variance,

the exact change required to reach significance is not uniform

across the cortex, being highest in the superior aspects of the

central sulcus, lowest in the prefrontal areas (see Fig. 3). Moreover,

statistical significance is dependent on the eFWHM, which in turn

is influenced by the amount of blurring, and the resulting resels and

statistical thresholds are plotted in Fig. 6. Threshold and resels are

minimized at a kernel size of 35 mm.

Population simulation

The simulation was modeled after a comparison between two

groups (bcontrolsQ and bpatientsQ), where the patient group had

their rSTG artificially thinned.

Thirty millimeters is the optimal kernel FWHM

An evaluation of different blurring kernels reveals the classic

trade-off: increasing kernel size improves sensitivity but also

decreases the ability to accurately estimate the regression slope.

As shown in Fig. 7, sensitivity increases up to a blurring kernel

of 35 mm and then declines. The mean slope, which should

approach 1 mm since one layer of voxels was removed in the

rSTG, declines steadily with increasing kernel sizes. Optimizing

the tradeoff between estimation of slope and sensitivity is

performed with the equation t = sensitivity � mean (slope), whose

maxima is found at 30 mm. The same pattern hold for both tlink and

tlaplace, though the decline in the regression slope is much more

noticeable for tlink.

The tlink is the most sensitive method

The six different cortical thickness metrics were all compared

at 30 mm blurring. The performances were compared by

evaluating the sensitivity (ability to recover true change) of the

different metrics at increasing truth thresholds. Fig. 8 shows the

thresholded t statistics maps superimposed onto a sphere along

with the probability map of the rSTG that represents the vertices

to be recaptured. Visual inspection of these maps shows that all

methods show significant results in the correct anatomical region,
Fig. 6. The effect of blurring kernels on resels and the t statistics threshold

using random field theory. The smoothness of the thickness maps as shown

by the number of resels decreases up until a 35-mm kernel, increases again

thereafter. This increase could be due to increasing influence of noncortical

areas (such as the corpus callosum and brain stem cut) included in the mesh.

The maximum kernel size that should be used is thus 35 mm.
and that tlink provides the most convincing overlap. Fig. 9

describes the same results by graphing sensitivity against

probability map threshold and statistical threshold. The tlink is

clearly the most sensitive method. The tlaplace is second, except at

high thresholds where tnormal surpasses it. This figure also

illustrates that regions of greater overlap of rSTG are easier to

recover. Four of the six metrics show a decline at high probability

map thresholds. The origin of this change is unknown but

probably results from an interaction between the shape of the

rSTG, the blurring kernel, and the geometric definitions of the

thickness metrics. When the truth threshold is set at 50% and the

statistical threshold is varied (as shown in the bottom part of Fig.

9), tlink is again the most sensitive.

Controlling for multiple comparisons

The results for any metric can be decomposed into its

component statistical measurements such as true-positives, false-

positives, and false-negatives, and their respective values evaluated

across changing statistical thresholds. This is shown for the tlink
metric in Fig. 10. False-positives (FP) decline rapidly with

increasing thresholds, true-positives (TP) and false-negatives

(FN) decrease and increase linearly. The relationship can be

described in the thresholding index, index = TP / FP + FN, which

maximizes true-positives while simultaneously minimizing false-

positives and false-negatives. This function has a maxima at t =

�3.3, considerably below the random field threshold of t = �4.67.
Discussion

The goal of this study was to examine a fully automated cortical

thickness analysis system, to differentiate between multiple cortical

thickness metrics, and to investigate the ability of cortical thickness

to differentiate between different populations. Accuracy of the

different metrics was never under investigation. Instead, we

addressed the question of precision.

Addressing precision is important in its own right, as it can

compare the relative ability of different metrics in differentiating

between groups of variable thickness. For example, it is

conceivable that the tnormal metric is the most accurate, yet its

high variability would reduce its value in population studies. The

precision of a metric measures its usefulness in the multiple subject

studies so often undertaken in brain imaging; and while high

precision with low accuracy is certainly undesirable, so is high

accuracy with low precision.

Comparing the different metrics

We compared six different metrics from three different labs.

Each metric was evaluated in terms of variance across a population

or a single subject as well as performance in the population

simulation. The results from these two tests are related, with

normalized standard deviation proving a significant predictor of

sensitivity in the population simulation (t = �3.48, P = 0.026, df =

5, R2 = 0.75). One conclusion is that future thickness methods

development should keep the goal of minimizing variability clearly

in sight and if necessary increase the complexity of the algorithm

to achieve that goal.

The different metrics can be ordered from best to worst by

comparing their performance in the variability analysis (see

Variability section) and the population simulation (see Population



Fig. 7. The effect of increasing blurring kernels as a function of sensitivity and mean regression slope. The maxima of the function t = sensitivity � mean

(slope) is to be found at 30 mm, indicating that this is the optimal blurring kernel size for this study. All calculations were made under the assumption that truth

is the rSTG probability map thresholded at 1%.
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section). The results of these two analyses can be summarized by

dividing the sensitivity of a metric by the percentage change that

can be recovered given two groups of 25. The ranking is as

follows:

1. tlink
2. tlaplace
3. tnormal

4. tlayered-normal

5. taverage-near
6. tnear

These metrics were all compared using the default param-

eters; it is conceivable that tuning the image analysis pipeline

in different ways will change the exact results produced in this
study. An especially important topic to pursue for further study

is the impact that closer spacing of vertices in the cortical

meshes has on the variability of thickness metrics (i.e.,

increasing our vertex count).

Six methods from three different labs were studied; there are,

however, others described in the literature on measuring cortical

thickness from MRI. The six methods were chosen for their

ability to be easily incorporated into our image processing

pipeline; any methods that inherently rely on different cortical

tessellations, such as Miller et al. (2000) and Zeng et al. (1999),

were therefore excluded. Other methods, such as the one

introduced by (Yezzi and Prince, 2003) extend methods

described and tested in this paper; their improvements might

very well lead to improved results in our simulation. We do

believe that the population simulation framework used in this

study is an elegant way to compare different cortical thickness



Fig. 8. Results of each of the different metrics at 30 mm blurring, thresholded at t z 2.5. The results are displayed on a sphere; the sphere in the center shows

the probability map of the rSTG, and thus the area of the cortex to be recaptured. Qualitative assessment of the shapes of the t statistics maps indicate that the

t link and t laplace produce the closest match to the probability map.
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metrics in a controlled yet realistic manner. We have therefore

made the volumes used in this study available in order to

encourage comparisons of different methods to the six metrics

described herein. The data can be found at http://www.bic.

mni.mcgill.ca/thickness_population_simulation/.

Varying variability

A noticeable trend in studying the variability across the cortex

is its regional variation. The most variable areas of the cortex are

the pre- and postcentral gyri, the primary visual areas, and the

anterior medial temporal lobes. Two explanations are likely to

play a role. First, areas with the thinnest cortex (the motor and

visual areas) have high variability. This can be accounted for by

the variance induced by the 1-mm sampling in the data sets.

Since the sampling stays uniform, but thickness varies, areas with

thin cortex are likely to have the highest normalized standard

deviation. The second argument relates to the difficulty in

segmenting certain areas. The medial temporal lobes, for

example, is one of the most challenging for the cortical fitting

(Kabani et al., 2001).

Effects of blurring

An open question often asked in voxel-based morphometry

applies to cortical thickness analysis as well: What amount of
smoothing is desirable? Our results suggest three conclusions in this

regard.

! An increase in the FWHM decreases variability, leading to

improved sensitivity up until a kernel size of 35 mm (see Fig. 7).

! Increasing FWHM changes the interpretation of the regression

slope, potentially underestimating the amount of localized

cortical thickness change as described in the Statistical

analysis section and shown in Fig. 7.

! Kernels larger than 35 mm actually decrease sensitivity (see

Fig. 7).

When there is prior information about the extent of the

signal (area of thinning) to be detected, the size of the

blurring kernel should match the size of the putative area of

change (i.e., matched filter theory; for an overview, see Pratt,

1991). However, for exploratory searches over the whole brain

where there is no prior expectation of signal extent, this

concept is meaningless. Tuning of blurring kernel size should

thus be driven by the desire to limit the FWHM in order to

allow for accurate estimation of b, while at the same time

staying large enough to retain sensitivity. Ultimately, therefore,

the size of the FWHM should be driven by the number of

subjects in the study: a large n allows for a smaller kernel,

which in turn allows for accurate estimation of the amount of

local thickness change, whereas small n still needs larger

 http:\\www.bic.mni.mcgill.ca\thickness_population_simulation\ 


Fig. 9. Sensitivity of the six different cortical thickness metrics at 30 mm blurring, graphed against ever more stringent statistical thresholds (bottom panel) and

percentage overlap of the rSTG (top panel). The superiority of the t link metric is clearly noticeable, attaining both a higher sensitivity across different thresholds

of the rSTG probability map as well as higher t statistics values compared to the other metrics.

Fig. 10. The top graph shows the individual components that make up the

thresholding index shown in the bottom graph. This lower graph was

generated at a rSTG threshold of 0.58, chosen since that is where the ratio

reaches its maximum (2.54) when searching across all possible rSTG

thresholds. Definitions: TP = true-positives, FP = false-positives, FN =

false-negatives.
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FWHM in order to retain adequate sensitivity. This equation

should be balanced by prior hypotheses about the expected

area of change.

Thresholding statistical maps

In the implementation described above, 40,962 linear models

are analyzed—one for each vertex—with every statistical analysis.

Multiple comparisons thus have to be corrected for. The prevailing

philosophy in brain imaging to date has been to provide stringent

control for type I error, most commonly implemented through

applications of random field theory or Bonferroni correction. This

stringency, as the population simulation shows, has its costs, as it

allows a high percentage of false-negatives. More liberal thresh-

olding techniques, such as the false discovery rate (Genovese et al.,

2002), might prove attractive for exploratory studies using cortical

thickness analysis. Incidentally, the thresholding index maxima at

t V �3.3 found in Controlling for multiple comparisons section

corresponds exactly to a false discovery rate q value of 0.05,

indicating that this new technique more closely approximates our

ideal thresholding index than the random field theory.
Conclusions

We have shown cortical thickness to be a reliable method,

reaching a sensitivity of 0.93. The most precise method is tlink.

This is due to its ability to minimize variance leading to higher
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statistical sensitivity. All the metrics had a specificity of 1.

While this may seem like a useless index for comparing and

contrasting the different metrics, it does indicate a high degree

of confidence in any results that are obtained regardless of the

metric employed.

Blurring along the surface was shown to be critical, as it

significantly increases the sensitivity of cortical thickness analysis.

The optimal blurring kernel in our simulation was 30 mm (see Fig.

7). An optimum thresholding index, which maximizes true-

positives against both false-negatives and false-positives, was

found to lie at t = 3.3 (see Fig. 10). Given these optimal parameters

and two groups of 25 subjects, a 0.6-mm (15%) change in

thickness after 30 mm blurring can be recovered. Increasing the

number of subjects to 100 in each group allows for a 0.29-mm

(7%) change to be recovered.

In order to validate our methodology, a framework was

created to capture the precision of the different thickness metrics

and to test the effect of changing parameters for image blurring

and statistical thresholding in the analysis pipeline. This general

framework can be used to examine future advances in the entire

pipeline, such as the impact of different tissue classification

methodologies and nonlinear alignment techniques. More work is

to be done in validating the accuracy of different metrics and

possibly in creating new metrics based on higher resolution

anatomical information, which should in turn be evaluated using

the precision criteria illustrated in this paper. The data used for

this paper has also been made available online to encourage

comparisons of other cortical thickness metrics against the ones

tested herein.
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