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We report new random field theory P values for peaks of canonical

correlation SPMs for detecting multiple contrasts in a linear model for

multivariate image data. This completes results for all types of

univariate and multivariate image data analysis. All other known

univariate and multivariate random field theory results are now special

cases, so these new results present a true unification of all currently

known results. As an illustration, we use these results in a deformation-

based morphometry (DBM) analysis to look for regions of the brain

where vector deformations of nonmissile trauma patients are related to

several verbal memory scores, to detect regions of changes in

anatomical effective connectivity between the trauma patients and a

group of age- and sex-matched controls, and to look for anatomical

connectivity in cortical thickness.

D 2004 Elsevier Inc. All rights reserved.
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Introduction

Multivariate image data are now collected routinely; that is,

several measures of brain function or anatomy are available at

each voxel. Examples are vector deformations to warp an MRI

image to an atlas standard, diffusion in several different

directions (the precursor to the diffusion tensor), and the HRF

sampled at several time points. Researchers often want to relate

these data to several explanatory variables such as task, stimulus,

performance measures, age, gender, or disease state. The simplest

approach is to use a multivariate multiple regression model at

each voxel.

For a single contrast in the explanatory variables, the natural

test statistic is Hotelling’s T2. Random field theory P values for the

peaks of a Hotelling’s T2 SPM have been available for some time

(Cao and Worsley, 1999a). For multiple contrasts, there are several
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multivariate analogues of the F-statistic, such as Wilks’s K and the

Lawley–Hotelling trace. There are as yet no known random field

theory P values for these SPMs. In this paper, we report new

random field theory results for another common multivariate

analogue of the F-statistic, Roy’s maximum root, equivalent to the

maximum canonical correlation (Taylor and Worsley, 2004). This

completes the random field theory for multivariate linear models

(see Table 1).

Since all other SPMs are special cases of Roy’s maximum root,

then our new results encompass all the random field theory results

known so far, including those in the dUnifiedT paper (Worsley et al.,

1996). More satisfying still, the computer code to actually

implement this (the stat_threshold function of fmristat,

available at http://www.math.mcgill.ca/keith/fmristat) is now

shorter because separate code for each special type of random

field is no longer needed.
Multivariate linear model

Our data set consists of N independent observations, taken for

example on N different subjects. Each observation is an image in

D dimensions, and at each voxel in the image, there is a set of q

random measurements, such as vector deformations, diffusions, or

HRF values. We wish to relate these to a set of p contrasts in

explanatory variables, such as task, stimulus, performance

measures, age, gender, or disease state, common to every voxel

(we shall relax this assumption later). At one voxel, we can

arrange the observations into an N � q matrix Y, and the

contrasted explanatory variables into an N � p matrix X.

Nuisance variables or variables unaffected by the contrasts (such

as a constant term) can be arranged into an N � r matrix Z. Our

problem is to relate Y to X, allowing for Z. This can be

formalized by a multivariate linear model, whose theoretical

development can be found in any book on multivariate statistics,

such as Anderson (1984). The model is

Y ¼ XBþ ZGþ NR1=2 ð1Þ
where B and G are p � q and r � q matrices of unknown

coefficients, N is an N � q matrix of independent, zero mean, unit
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Table 1

Multivariate linear model SPMs for which random field theory P values for

local maxima are now available

Number of contrasts p

1 N1

Number of variates, q 1 T F

N1 Hotelling’s T2 Roy’s maximum root
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variance Gaussian errors, and R = R1/2VR1/2 is an unknown q � q

covariance matrix of the q random variates. Formally, we wish to

test the null hypothesis that B = 0.
Union–intersection principle

One way of doing this is Roy’s union–intersection principle

(Roy, 1953), which is the key to the random field theory in the next

section. The idea is as follows: if the alternative hypothesis is a union

of (simpler) hypotheses, or equivalently, if the null hypothesis to be

rejected is an intersection of (simpler) hypotheses, then test each of

the simpler hypotheses and reject only if each of the simpler

hypotheses is rejected at some fixed level a*. This determines the

test procedure, but not the level a* of the simpler tests needed to

achieve level a (=0.05, say) for the overall test. In the case of

multivariate data, Roy implemented this principle as follows:

1. Take a linear combination of the multivariate image data,

creating (simpler) univariate image data.

2. Work out the F-statistic for relating the univariate image data

to the multiple contrasts.

3. Maximize the F-statistic over all such linear combinations.

The result is Roy’s maximum root, R.

If there is at least one such set of univariate data that shows an

effect in the population (the union), then there is an effect; if none

of them have any effect (the intersection), then there is none. By

the union–intersection principle, the overall null hypothesis of no

effect is rejected if Roy’s maximum root exceeds a threshold (to be

determined to control the false-positive rate).

Formally, let v be a q � 1 vector of arbitrary constants and y =

Yv be the corresponding linear combination of the components of

the data. Then from (1)

y ¼ Xbþ Zg þ nr

where b = Bv, g = Gv, n is a vector of N independent zero mean,

unit variance Gaussian random variables, and r2 = vVRv. This is

just a standard univariate linear model, for which we can evaluate

the usual F-statistic Fv for testing b = 0 in the usual way (Friston

et al., 1995). The degrees of freedom are p and m = N � p � r.

Then Roy’s maximum root statistic can be defined as

R ¼ max
v

Fv:

Another way of defining Roy’s maximum root, more useful in

practice, is given in Appendix A. When the number of contrasts is

p = 1, R is the same as Hotelling’s T2, which equals the maximum

of the square of the T statistic for relating y to X, hence the name.

Another approach is via maximal canonical correlations. Let u

be a p � 1 vector of constants and let x = Xu. Then let cu,v be the

squared correlation between x and y removing the effect of
(allowing for) Z. To do this, let RZ = I � Z(ZVZ)�1ZV, where I is the
N � N identity matrix, and x* = RZx, y* = RZy, then

cu;v ¼
x4Vy4ð Þ2

x4Vx4y4Vy4
:

The maximum canonical correlation is

C ¼ max
u;v

cu;v;

which is related to Roy’s maximum root by

R ¼ C=p

1� Cð Þ=m ;

so that R and C are equivalent SPMs.

Further generalizations are possible. We could extend the above

effective connectivity analysis by searching over all reference

voxels, as well as over all target voxels. This leads to the cross-

correlation SPM introduced by Cao and Worsley (1999b). This is

defined in the same way as above, except that X is now random

image data sampled at a voxel in an E-dimensional search region T.

The number of dimensions of the cross-correlation SPM now

becomes D + E. In the case of the autocorrelation SPM, the images

are the same, and X and Y come from different well-separated

voxels. Obviously neighboring voxels should be excluded from the

autocorrelation SPM because they are correlated due to the

smoothness of the data. It is possible that the images are different,

and we are only interested in cross-correlations at the same voxel.

This is known as the homologous-correlation SPM (Cao and

Worsley, 1999b). Examples include correlations of two different

tasks at the same voxel.

Another generalization is to restrict the linear combinations to a

part of the sphere, such as a cone (Taylor and Worsley, 2004).

Applications include searching over temporal shifts in the HRF, as

suggested by Friman et al. (2003).
Random field theory

The key is that themaximum ofF over all voxels is themaximum

of Fv over all voxels and all linear combinations v. In other words, it

is the maximum of an F-statistic SPM over a larger (D + q)-

dimensional search region: the D dimensions of the voxel and the q

dimensions of the linear combinations v. Although it looks like we

havemade the problemmore difficult by adding extra dimensions, in

fact, we have made it simpler: all we need to do is to extend random

field theory to a larger number of dimensions. The theoretical details

are given in Taylor andWorsley (2004), but we report the main ideas

and the final result that they lead to, in this section.

The corrected P value of local maxima of a smooth SPM in a

D-dimensional search region S is well approximated by

P max
S

SPM N t

� �
c
XD
d¼ 0

Reselsd Sð ÞECd tð Þ; ð2Þ

where Reselsd and ECd are the resels of the search region and the

Euler characteristic (EC) density of the SPM in d dimensions.

Expressions for both of these for Gaussian, v2, T and F SPMs, and

d V 3 can be found in Worsley et al. (1996). Table 2 gives results

for the most common case, a T-statistic SPM with m degrees of

freedom inside a convex search region S in D = 3 dimensions; for

arbitrary dimensions, see Appendix B.
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Proceeding with the above heuristic, we first note that the search

region for v can be restricted to the q � 1-dimensional unit sphere V

consisting of all unit vectors v with vVv = 1. We only need to find the

resels for the product of S and V. Fortunately, this is quite simple: it

only depends on sums of products of the resels of S and the resels of

V. This in turn implies that the P value approximation for Roy’s

maximum root is once again a linear combination of resels of S. In

other words, we have the elegant result that the P value

approximation to the maximum of the Roy’s maximum root SPM

is of the same form as (2) but with different EC densities.

There are simple formulas for the resels of V, and putting these

all together, we obtain the following very simple expression for the

dEC densityT of the Roy’s maximum root random field:

ECR
d ðtÞ ¼

Xq� 1

i¼ 0

a
q
i EC

F
dþ i tð Þ; ð3Þ

where ECd
F(t) is the EC density of the F-statistic SPM with p and

m degrees of freedom and

a
q
i ¼

p
log 2

�i=2 C qþ 1
2

� �
i! q� 1� i

2
Þ!

�
 

ð4Þ

if q � 1 � i is even, and 0 otherwise, i = 0,. . .,q � 1. To use this

result, we need EC densities beyond the d = 3 dimensions given in

Worsley et al. (1996). A general expression can be found in

Worsley (1994), and for convenience, it is reproduced in Appendix

B. The EC density of Hotelling’s T2 (Cao and Worsley, 1999a)

now falls out as a special case when p = 1.

The reason for the quotes around dEC densityT is that ECd
R(t)

is not quite the density of the Euler characteristic of the excursion

set of voxels where R exceeds t. It is an alternating sum of the

EC density of the maximum root (or eigenvalue—see Appendix

A), minus the EC density of the second largest root, plus the EC

density of the third largest root, and so on. In the case of

Hotelling’s T2 ( p = 1), there is only one nonzero root, and so

ECd
R(t) is the EC density of the Hotelling’s T2 SPM. For p N 1, the

presence of the extra terms makes ECd
R(t) slightly too small

(anticonservative) for the true EC density of R. However, for large

thresholds, those usually encountered in practice, the chance that

the second largest root exceeds t is much smaller than the chance

that the largest root exceeds t, so the extra terms are negligible.
Table 2

Resels for a convex search region S and EC densities for a T-statistic SPM

with m degrees of freedom in d dimensions

D Reselsd(S) ECd(t)

0 1 Rl
t

C mþ1
2ð Þ

mpð Þ1=2C m
2ð Þ 1þ u2

m

	 
� mþ 1ð Þ=2
du

1
2 Diameter Sð Þ

FWHM

4loge2ð Þ1=2
2p 1þ t2

m

	 
� m� 1ð Þ=2

2
1
2
Surface area Sð Þ

FWHM2

4loge2ð Þ
2pð Þ3=2

C m þ 1
2ð Þ

m
2ð Þ1=2C m

2ð Þ
1þ t2

m

	 
� m� 1ð Þ=2
t

3
Volume Sð Þ
FWHM3

4loge2ð Þ3=2

2pð Þ2 1þ t2

m

	 
� m� 1ð Þ=2
m� 1
m

t2 � 1
��

FWHM is the effective full width at half maximum of a Gaussian kernel used

to smooth the white noise errors n in the image data y. The diameter of a

convex 3D set is the average distance between all parallel planes tangent to

the set. For a ball, this is the diameter; for a box, it is half the sum of the sides.

For a 2D set, it is a quarter of the perimeter length. Note also that a 2D set has

two sides, so the surface area should be doubled, and its volume is zero.
P values for local maxima of the maximum canonical auto- or

cross-correlation SPM C can then be found by a formula very

similar to (3):

P max
S;T

C N t

!
c
XD
d¼ 0

Reselsd Sð Þ
XE
e¼ 0

Reselse Tð Þ
 

�
Xq� 1

i¼ 0

a
q
i

Xp� 1

j¼ 0

a
p
j EC

C
dþ i;eþ j tð Þ: ð5Þ

Details are given in Taylor and Worsley (2004). The EC

densities ECd,e
C(t) can be found in Cao and Worsley (1999b), and

for convenience, they are reproduced in Appendix C.

In fact the above theory can be unified still further. All the

other known results can be obtained from the cross-correlation

field via (3) and by setting T, the search region for X, to a single

point, so its 0-dimensional resels is 1, and the others are 0. For

example, to get the FSPM results, set q = 1; to get Hotelling’s T2

SPM results, set p = 1; in both cases transform C to F or

Hotelling’s T2 by (C/p)/((1-C)/m).
Illustrative applications

As an illustration of the methods, we apply the P values for

Roy’s maximum root and maximum canonical correlation (but not

cross-correlation) to a data set on nonmissile trauma (Tomaiuolo et

al., 2004). The subjects were 17 patients with nonmissile brain

trauma who were in a coma for 3–14 days. MRI images were taken

after the trauma, and the multivariate data were q = 3 component

vector deformations needed to warp the MRI images to an atlas

standard (Collins et al., 1995; Chung et al., 2001) sampled on a 2-

mm voxel lattice. The same data were also collected on a group of

19 age- and sex-matched controls.

Damage is expected in white mater areas, so the search region

S was defined as the voxels where smoothed average control

subject white matter density exceeded 5%. For calculating the

resels, this was approximated by a sphere with the same volume,

1.31 litres, which is slightly liberal for a nonspherical search

region. The effective full width at half maximum (FWHM),

averaged over the search region, was 13.3 mm.

The first analysis was to look for brain damage by comparing

the deformations of the 17 trauma patients with the 19 controls,

so the sample size is N = 36. We are looking at a single contrast,

the difference between trauma and controls, so p = 1 and the

residual degrees of freedom is m = 34. In this case, Roy’s

maximum root is Hotelling’s T2. The P = 0.05 threshold, found

by equating (2) to 0.05 and solving for t, was t = 54.0 (the

Bonferroni threshold was 60.3). The thresholded data, together

with the estimated contrast (mean trauma-control deformations),

are shown in Fig. 1a. A large region near the corpus callosum

seems to be damaged. The nature of the damage, judged by the

direction of the arrows, is away from the center (see Fig. 1b).

This can be interpreted as expansion of the ventricles, or more

likely, atrophy of the surrounding white matter, which causes the

ventricle/white matter boundary to move outwards.

The second analysis was to try to relate the damage to six

measures of memory taken on the 17 trauma patients: immediate and

delayed recall of words, short story, and Rey figure (7% were

missing, so for purposes of illustration, these were imputed from the

rest of the data by fitting a simple two-way ANOVA model). The



Fig. 1. Deformation-based morphometry of nonmissile trauma data. (a) Trauma minus control average deformations (arrows and color bar), sampled every

6 mm, with Hotelling’s T2 statistic for significant differences (threshold t = 54.0, P = 0.05, corrected). The reference voxel of maximum Hotelling’s T2 is

marked by the intersection of the three axes. (b) Closeup of (a) showing that the damage is an outward movement of the anatomy, either due to swelling of the

ventricles or atrophy of the surrounding white matter. (c) Regions of effective anatomical connectivity with the reference voxel, assessed by the maximum

canonical correlation (threshold t = 0.746, P = 0.05, corrected). The reference voxel is connected with its neighbors (due to smoothness) and with contralateral

regions (due to symmetry). (d) Regions where the connectivity is different between trauma and control groups, assessed by Roy’s maximum root (threshold

t = 30.3, P = 0.05, corrected). The small region in the contralateral hemisphere is more correlated in the trauma group than the control group.
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hypothesis was that only damage in certain areas might be related to

these memory measures. The sample size is now N = 17, with p = 6

contrasts and m = 10 residual degrees of freedom. The P = 0.05

threshold for Roy’s maximum root is 712.6, but the largest observed

value was 66.8, so there is not enough evidence to relate brain

damage to memory scores. This is hardly surprising since the

number of contrasts is so high and the number of residual degrees of

freedom is so low, which produce a Bonferroni threshold of 283.6

that is in fact much lower than the random field threshold.

We might also be interested in effective anatomical connectivity:

are there any regions of the brain whose shape (as measured by the

deformations) is correlated with shape at a reference voxel? In other

words, the explanatory variables are the deformations at a

preselected reference voxel, and the test statistic is the maximum

canonical correlation SPM, or equivalently, the Roy’s maximum

root SPM with p = 3. We chose as the reference the voxel with

maximum Hotelling’s T2 for damage, marked by axis lines in Fig. 1.

Fig. 1c shows the resulting canonical correlation SPM above the P =
0.05 threshold of 0.746 for the combined trauma and control data

sets removing separate means for both groups (N = 36, p = 3, m =

31). Obviously, there is strong correlation with voxels near the

reference, due to the smoothness of the data. The main feature is the

strong correlation with contralateral voxels, indicating that brain

anatomy tends to be symmetric.

A more interesting question is whether the correlations observed

in the control subjects are modified by the trauma (Friston et al.,

1997). In other words, is there any evidence for an interaction

between group and reference vector deformations? To do this, we

simply add another three covariates to the linear model whose values

are the reference vector deformations for the trauma patients and the

negative of the reference vector deformations for the control subjects.

The resulting Roy’s maximum root SPM for testing for these three

extra covariates, thresholded at 30.3 (P = 0.05, N = 36, p = 3, m =

28), is shown in Fig. 1d. Apart from changes in the neighborhood of

the reference voxel, there is some evidence of a change in correlation

at a location in the contraleteral side, slightly anterior. Looking at the



Fig. 2. Connectivity of cortical thickness. (a) Cortical thickness of one subject, smoothed by 20 mm, plotted on the average of the N = 321 midcortical surfaces.

(b) First principal component of the subject � node matrix of residuals removing a gender effect. The ends of the rods join nodes where the autocorrelation

SPM
ffiffiffiffi
C

p
of cortical thickness exceeded t = F0.338 (n = 319 null degrees of freedom, P = 0.05, corrected). Only 4D local maxima inside the same hemisphere

are shown. (c) Back view and color bar: yellow to red rods indicate positively correlated nodes; blue rods indicate negatively correlated nodes. (d) Top view.

Note that red rods tend to join similarly colored principal component regions, whereas blue rods tend to join differently colored principal component regions.

(e, f) same as (c, d) but removing an age effect and age–gender interaction (n = 317), which also removes some of the effective connectivity.
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maximum canonical correlations in the two groups separately, we

find that correlation has increased at this location from 0.719 to

0.927, perhaps indicating that the damage is strongly bilateral.

If we chose to search over all reference voxels as well as all

target voxels, this would lead to a maximum canonical autocorre-

lation SPM, for which the P value (5) could be used to set a

threshold. This is obviously computationally very expensive, and

unless the number of subjects is very large, it is unlikely to reveal

much beyond the obvious symmetry reported above. Moreover, it

is probable that the Bonferroni bound may be better than the
random field theory P value. Furthermore, the theory cannot be

applied to the more interesting interaction analysis that we tried

above, that is, to look for changes in connectivity between groups.

The reason is that the nuisance variables (the main effect or

common deformations) are now also random fields, and the theory

we have presented here assumes that the nuisance variables are

common to all voxels (such as a constant term, age, or gender).

Nevertheless, we illustrate themethod on the cortical thickness of

N = 321 normal adult subjects aged 20–70 years, smoothed by 20-

mm FWHM, part of a much larger data set fully described in Goto et
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al. (2001). The data are univariate, so p = q = 1 (Fig. 2a). We

removed a gender effect, then calculated the square root of the

autocorrelation SPM,
ffiffiffiffi
C

p
, for all pairs of the 40,962 triangular mesh

nodes, ignoring pairs of voxels that were too close. The search

regions S and T are the whole cortical surface, with D = E = 2,

Resels0(S) = 2, Resels1(S) = 0 (since a closed surface has no

boundaries), and Resels2(S) = 759 (see Worsley et al., 1999). From

(5) with n = 319 null degrees of freedom, the P = 0.05 threshold forffiffiffiffi
C

p
is t =F0.338. Figs. 2(b–d) show only 4D local maxima above t

inside the same hemisphere. The cortical surface is color-coded by

the first principal component of the subject � node matrix of

residuals removing a gender effect. This also reveals regions that are

similarly correlated. In fact, the positive autocorrelations tend to join

regions with either high (red) or low (blue) principal component, and

negative autocorrelations tend to join regions with different principal

component values. Figs. 2e,f show the same analysis but removing a

linear age effect and an age–gender interaction, so that n = 317 null

degrees of freedom. Note that many of the correlations now

disappear, showing that they were induced by age effects. For

example, if two regions become thinner over time, than this will

induce an apparent positive correlation between these two regions.

This illustrates the importance of removing all fixed explanatory

variables before carrying out an effective connectivity analysis.
Discussion

The results announced in this paper complete the random field

theory for multivariate linear models: we now have results available

for P values of local maxima for all types of SPMs. They are

incorporated into the stat_threshold function of fmristat,

available at http://www.math.mcgill.ca/keith/fmristat. However,

these results are only for local maxima; a common alternative is

to detect activation by the size of clusters (connected components)

of suprathreshold voxels (Friston et al., 1994). Results are only

available for univariate (T and F) SPMs (Cao, 1999), and so far,

nothing is known about the size of clusters of multivariate SPMs.

It should be noted that the random field theory P values are only

accurate when the FWHM of the SPM is large compared to the

voxel size, otherwise the Bonferroni approximation is lower and

better (since it is an upper bound). This is particularly so if the

degrees of freedom is small, as we saw in the illustrative example of

a relation between verbal memory scores and deformations within

the trauma group. As a result, stat_threshold always outputs

the minimum of the random field theory and Bonferroni P values.

Even so, the above results are useful for calculating the

Bonferroni bound. Unlike the T, F, and Hotelling’s T2, there is no

closed form expression for the probability density function of Roy’s

maximum root. Instead, the random field P value approximation (2)

with D = 0 is a very accurate approximation for the P value at a

single voxel.

There is one restriction on the spatial correlation of the

components. The spatial correlation of every linear combination y

must be identical. This rules out the application of our results to a

type of canonical correlation analysis proposed by Friman et al.

(2002). This paper proposes to use the data at a central voxel and the

3D � 1 neighboring voxels as the multivariate observations in a

multivariate linear model. If the errors are stationary, the central

voxel and all its neighbors have identical spatial correlation

structure, but this is not so for every linear combination. In

particular, the numerical derivatives have a different spatial
correlation structure from that of the voxels. Unfortunately, this

also rules out further generalizations that replace neighboring voxels

by steerable filters (Friman et al., 2003). Note that correlations bet-

ween components at the same voxel can be arbitrary and different for

different voxels. Aside from this, allowances can be made for

nonisotropic errors in the same way as for univariate data—see

Worsley et al. (1999), Taylor and Adler (2003), and Hayasaka et al.

(2004).
Appendix A. Multivariate test statistics

Wewish to test the null hypothesis thatB =0. This can be assessed

by comparing the q � q mean hypothesis sum of squares matrix H,

to the q � q mean error sum of squares matrix W, defined as

H ¼ Y4VX4 X4VX4ð Þ�1
X4VY4=p;

W ¼ Y4VI � X4 X4VX4ð Þ�1
X4V

h i
Y4=m;

whereX*=RZX, Y*=RZY, andm =N� p� r is the residual degrees

of freedom. In the univariate case ( q =1), the appropriate test statistic

is the F statistic, defined as

F ¼ H=W ;

but in the multivariate case, we cannot simply divide two matrices

to get a scalar test statistic. Instead, several ways of comparing H to

W have been proposed in the statistics literature. All are monotonic

functions of the eigenvalues (roots) f1,. . .,fq of W�1H, and all are

equivalent to the F-statistic in the case q = 1. The most natural is the

likelihood ratio, equivalent to Wilks’s K = 1/ji = 1
q (1+ fip/m);

another is the Lawley–Hotelling trace
P

i
q

= 1 fi. The statistic we

shall concentrate on here is Roy’s maximum root,

R ¼ max
i

fi:

In the case of one contrast ( p = 1), there is only one nonzero

eigenvalue, and so all test statistics are equivalent, and equivalent to

Hotelling’s T2. Different test statistics are more sensitive to different

departures from the null hypothesis. If the effect of the contrasts is

mainly expressed in one variate or in one linear combination of

variates, then Roy’s maximum root is the most sensitive.

The canonical correlations between X and Y removing the effect

of (allowing for) Z are the eigenvalues c1,. . .,cq of

Y4VY4ð Þ�1
Y4VX4 X4VX4ð Þ�1

X4VY4 ¼ Wmþ Hpð Þ�1
Hp: ð6Þ

In the univariate case, the (single) canonical correlation is just the

square of the usual correlation coefficient between X and Y

removing the effect of Z. The canonical correlations all lie between

0 and 1 and are related to the previous eigenvalues (if they are both

ordered) by

ci ¼
fip

m þ fip
:

This implies that all the previous multivariate test statistics are

functions of the canonical correlations. In particular, the maximum

canonical correlation is a function of Roy’s maximum root:

C ¼ Rp

m þ Rp
:

 http:\\www.math.mcgill.ca\keith\fmristat 
 http:\\www.math.mcgill.ca\keith\fmristat 
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Appendix B. EC density of the T- and F-statistic SPM

The EC density of the F-statistic SPM in d = 0 dimensions

is just the upper tail probability of the F-statistic with p and m

degrees of freedom, P(F N t). For d z 1 dimensions it is

ECF
d tð Þ ¼ log2

p

� �d=2 2 d � 1ð Þ!C pþm� d

2

� �
m p� dð Þ=2C p

2

� �
C m

2

� � 1þ pt

m

	 
� pþm� 2ð Þ=2

�
Xd� 1

i¼ 0

�1ð Þd� 1� i
ptð Þiþ p� dð Þ=2 Xmin fi;d� 1� ig

j¼ 0

�
pþm� d

2
þ j � 1

j

 !
m� 1

i� j

� �
p� 1

d � 1� i� j

� �
m�i;
where (a
b) is G(b + 1)/(G(a + 1)G(b � a + 1)) if 0 V b V a

and zero otherwise. For the T-statistic SPM ( p = 1),

ECT
d tð Þ ¼ ECF

d t2
� �

sign tð Þd þ 1=2þ t b 0ð Þ d ¼ 0Þ:ð

Note that the EC density in Worsley (1994) differs from that

given here and in Worsley et al. (1996) by a factor of (4 log 2)d /2.

This is because the P value approximation in Worsley (1994) is

expressed in terms of Minkowski functionals (intrinsic volumes) of

S, whereas in Worsley et al. (1996), the P value is expressed in

resels of S. The summations have also been rearranged for easier

numerical evaluation. The terms in the above expression have been

carefully grouped so that they remain numerically stable for large

values of m, provided the gamma functions are evaluated on the

log scale.
Appendix C. EC density of the cross-correlation SPM

The EC density of the cross-correlation SPM in d = 0, e = 0 dimensions is just the upper tail probability of the beta distribution with

parameters 1/2, (n � 1)/2, where n = N � q is the null degrees of freedom. For d N 0, e z 0 and n N d + e, it is

ECd;e
C tð Þ ¼ log2

p

� �ðdþ eÞ=2
2n� 1

p

Xmin d� 1;ef g

k¼ 0

�1ð Þk t dþ e� 1ð Þ=2� k 1 � tð Þ n� 1� d� eð Þ=2þ k

�
Xk
i¼ 0

Xk
j¼ 0

C n � d
2

þ i
� �

C n � e
2

þ j
� �

d � 1ð Þ!e!
i!j! k � i� jð Þ! n� 1� d � eþ iþ jþ kð Þ! d � 1� k � iþ jð Þ! e� k � jþ ið Þ! ;

where terms with negative factorials are ignored, and ECe,d
C (t) = ECd,e

C (t). Note that the EC density in Cao and Worsley (1999b) differs from

that given here by a factor of (4 log 2)(d + e)/2. This is because the P value approximation in Cao and Worsley (1999b) is expressed in terms of

Minkowski functionals (intrinsic volumes), whereas here, the P value (5) is expressed in resels. The summations have also been rearranged

for easier numerical evaluation.
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