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We compare two common methods for detecting functional connectivity: thresholding correlations
and singular value decomposition (SVD). We find that thresholding correlations are better at
detecting focal regions of correlated voxels, whereas SVD is better at detecting extensive regions of
correlated voxels. We apply these results to resting state networks in an fMRI dataset to look for
connectivity in cortical thickness.
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1. INTRODUCTION
The idea behind functional connectivity is to establish

connectivity between two regions of the brain on the
basis of similar functional response. For example, if two

regions of the brain show similar functional magnetic
resonance imaging (fMRI) measurements over time,
then we could say that they are functionally connected,

even though there may be no direct neuronal connec-
tion between these two regions. We can extend this idea

to any image measurements. For example, if two
regions of the brain show similar anatomical features
(over subjects), such as cortical thickness, then we

could say that they are ‘functionally’ connected as well.
The purpose of this paper is to compare two

common approaches for detecting functional connec-
tivity of image data (Koch et al. 2002; Horwitz 2003).
The first and most direct method is to calculate a

correlation of image values between pairs of voxels,
then threshold these correlations to reveal the statisti-

cally significant connectivity (Cao & Worsley 1999).
The second is to do a singular value decomposition

(SVD). SVD is equivalent to principal components

analysis (PCA; Baumgartner et al. 2000), and similar to
independent components analysis (ICA; van de Ven

et al. 2004). In non-mathematical terms, SVD seeks to
express the correlation structure with a small number
of ‘principal components’, multiplied by random

weights that vary randomly over time or subject. Voxels
with high principal component values clearly covary

together and are therefore positively correlated; voxels
with high opposite signed components covary in
opposite senses and are therefore negatively correlated.

In practice, we extract the first few principal com-
ponents, then threshold these components at an

arbitrary level (since there are as yet no p-value results
for local maxima of principal or independent
tribution of 21 to a Theme Issue ‘Multimodal neuroimaging
connectivity’.
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components). These regions are then our estimate of
the connected voxels.

A third method, clustering, attempts to form
clusters of voxels whose values over time or over
subject are similar (Cordes et al. 2002). This is closely
related to the first method, thresholding correlations,
since correlation is used by many clustering methods
as a measure of similarity and thresholding corre-
lations simply clusters together all voxels whose
similarity exceeds a threshold value. A fourth method,
structural equations models (Gonçalves & Hall 2003),
attempts to model the connectivity, but this is only
feasible for connectivity between a small number of
pre-selected voxels or regions. A thorough treatment
of these last two methods is beyond the scope of this
paper.

Our first step is to establish a common notation. It
will be convenient to generalize slightly and assume that
we have two sets ofN images on each experimental unit
(e.g. time or subject), denoted by the matricesX and Y.
The rows are the image values, and theN columns ofX
and Y are the units (the number of columns N is
identical, but the number of rows may differ). For
example, X may be fMRI images mapped onto the
visual cortex, and Ymay be fMRI images of the frontal
lobe, or the two sets of images may be different
modalities such as positron emission tomography
(PET) and fMRI across subjects. The most common
case is when there is only one set of images, in which
case we shall setXZY. Usually the columns ofX and Y
are centred by subtracting their mean value (over units),
or in general by removing the effect of a common linear
model. To investigate correlations, and not covariances,
we shall assume that each column of X and Y is
normalized by dividing by its root sum of squares, so
that the diagonal elements of the correlation matrices
X 0X and Y 0Y is 1. The correlation between X and Y is
defined as:

C ZXY 0: (1.1)
q 2005 The Royal Society



Table 2. Thresholds at pZ0.05 for nZ100 null d.f., and
three-dimensional search regions of size 1000 cm3 with
10 mm smoothing.

dimensions SPM

method D E C t

one voxel–one voxel 0 0 0.165 1.66
one ‘seed’ voxel–volume 0 3 0.448 4.99
volume–volume

(auto-correlation)
3 3 0.609 7.64

volume–volume
(cross-correlation)

3 3 0.617 7.81

Table 1. Resels for a convex search region R in D dimensions
(FWHM is the effective full width at half maximum of a
Gaussian kernel used to smooth the white noise errors in the
image data X. The diameter of a convex three-dimensional
set is the average distance between all parallel planes tangent
to the set. For a ball this is the diameter; for a box it is half the
sum of the sides.)

d D

0 1 2 3

0 1 1 1 1
1 lengthðRÞ

FWHM
ð1=2Þ perimeter lengthðRÞ

FWHM
2 diameterðRÞ

FWHM

2 areaðRÞ
FWHM2

ð1=2Þ surface areaðRÞ
FWHM2

3 volumeðRÞ
FWHM3
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If the two sets of images are the same, that is XZY,
we refer to C as an auto-correlation matrix, otherwise it
is a cross-correlation matrix.
2. CORRELATIONS
Their (null) degrees of freedom (d.f.) n is the residual
degrees of freedom of the linear model, with nZNK1
in the case of centred data. The correlation can then be
converted (element-wise) to a t statistic with mZnK1
d.f. in the usual way:

t Z

ffiffiffiffi
m

p
Cffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1KC2
p : (2.1)

If the images are smooth, then p-values for local
maxima of the maximum auto- or cross-correlation
statistical parametric map (SPM) C can then be found
using random field theory. If the search regions R and S
ofX and Y haveD and E dimensions, respectively, then

P max
R;S

CO t

� �
z

XD
dZ0

ReselsdðRÞ
XE
eZ0

ReselseðSÞEC
C
d;eðtÞ;

(2.2)

where Resels and EC are the resels of the search region
and the Euler characteristic (EC) density of the
correlation SPM. The EC densities ECC

d;eðtÞ can be
found in Cao & Worsley (1999) and for convenience
they are reproduced in Appendix A. The resels are
given in table 1.

In practice, it is often forbidding to calculate all the
correlations, so a common practice is to take a ‘seed’
voxel and correlate all other voxels with the obser-
vations at the seed voxel. In this case the threshold can
be determined as above but with R replaced by a point
in DZ0 dimensions. The resulting threshold is
identical to that obtained by applying the usual random
field theory to the t statistic SPM t from equation
(2.1)—see Worsley et al. (1996).

Hampson et al. (2002) propose iterating this
procedure: use the statistically significant global maxi-
mum of the t SPM as a new seed and repeat the analysis
until no further seeds are found. Each seed is tested for
connectivity at the same (corrected) p-value of say 0.05.
Hampson et al. (2002) show that the false positive rate
of the overall procedure is still controlled at roughly
0.05. The argument is that when we get to the last seed,
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the chance of finding any further seeds is 0.05, and the
chance of finding any others beyond that is roughly
0.052 which is very small.

Of course the main criticism of such an approach is
that it will find only one network of connected voxels
that happen to contain the initial seed voxel. Other
disjoint networks will not be detected. To detect all
networks, we must resort to thresholding the corre-
lation between all pairs of voxels, setting the threshold
as above.

The amount of storage can be forbidding, since C is
a voxels!voxels matrix, but we can avoid storing it
altogether by first calculating the threshold, then only
keeping those correlations that exceed the threshold.
This can be reduced still further by only retaining local
maxima, that is, pairs of voxels whose correlation is
larger than the correlation between one voxel and any
neighbour of the other.

The price to pay for searching all voxels is not as
great as might be expected. For nZ100 null d.f., three-
dimensional spherical search regions of size 1000 cm3

and 10 mm smoothing, the pZ0.05 thresholds are
given in table 2. The auto-correlation thresholds are
obtained by halving the six-dimensional search region
(since correlations between r and s are the same as those
between s and r), or equivalently, doubling the p-value
to 0.1. As we can see, the increase in thresholds from 3
to 6 dimensions is not nearly as great as from 0 to 3
dimensions.
3. SINGULAR VALUE DECOMPOSITION
The SVD of the cross-correlation matrix C is:

C ZUWV 0; (3.1)

where U and V are orthonormal matrices whose rows
are voxels and whose columns are components for X
and Y, respectively, and W is a diagonal matrix of
component weights. We then approximate C by
equation (3.1) with the smaller weights inW set to zero.

Note that if XZY then this is just a PCA. Note also
that if X is not an image but a matrix of covariates, this
is commonly called partial least squares (McIntosh &
Lobaugh in press).

The size of C (voxels!voxels) is usually much larger
than its rank, again making storage prohibitive. For-
tunately there is an easier way of finding the SVD of C
from the eigenvectors A of the following much smaller
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Figure 1. Focal connectivity by (a) t statistic for correlation with a seed voxel and (b) PCA. The thresholded t statistic (equivalent
to thresholding the correlation) clearly shows the correlated focal regions, but the PCA shows nothing.
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units!units matrix:

ðX 0XY 0Y ÞAZAL; BZAðA0Y 0YAÞK1=2;

W ZL1=2; UZXðY 0YBWK1Þ; V ZYB:

)
(3.2)

Note that L and A0Y0YA are positive diagonal
matrices. We can also write X and Y in terms of U
and V as follows

XZU ðBW Þ0; YZV ðY 0YBÞ0; (3.3)

so that we can regard the columns of BW and Y 0YB as
(orthogonal) unit components that weight the spatial
components in U and V to produce the observed
correlation structure of X and Y, respectively.
4. COMPARISON OF THRESHOLDED
CORRELATIONS AND SINGULAR
VALUE DECOMPOSITION
Thresholding correlations directly detects those pairs
of voxels that are highly correlated. SVD indirectly
detects regions whose voxels behave in a similar way,
that is, all moving up or down together. However, the
Phil. Trans. R. Soc. B (2005)
two methods do not always detect the same regions. To

illustrate this, we simulated NZ120 smooth standard

Gaussian white noise (full width at half maximum

(FWHM)Z8 mm) images, chosen to represent the

noise component of typical fMRI data. We added

connectivity by reversing the SVD, that is, we made up

a spatial component to reflect the regions to be

connected, modulated this with a zero-mean Gaussian

temporal component whose variance was chosen to

induce the desired correlation, and added it to the noise

component. We chose two types of connected regions.
(i)
 Focal—two Gaussian-shaped regions (FWHMZ
8 mm) placed in the right frontal and left occipital
region.
(ii)
 Extensive—a rough binary mask of the right frontal
and occipital region, smoothed with a Gaussian-
shaped filter (FWHMZ8 mm).
Here, we are looking for auto-correlations so XZY.
We then applied SVD (here PCA, since XZY ) and

thresholding correlations with a seed voxel, chosen to

be the voxel of maximum added spatial component in
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Figure 2. Extensive connectivity by (a) t statistic for correlation with a seed voxel and (b) PCA. The thresholded t statistic
(equivalent to thresholding the correlation) shows no statistically significant evidence of connectivity, but the PCA clearly shows
the connected regions (red).
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the frontal region. The results are shown in figures

1 and 2.

Note that the data have mean zero, so there is no

need for centring, and so nZNZ120 and the d.f. of

the t statistic is mZ119. The search regions were

approximated by spheres with a volume of 1184 cm3

containing 30 786 voxels. For correlation with a seed

voxel and searching over all target voxels, the pZ0.05

threshold for the t statistic is 4.89; for searching over

all pairs of voxels, the pZ0.05 threshold for the t
statistic is 6.95.

For the focal correlation, the maximum t statistic for
correlation with the seed voxel is 7.78, which is

significant at the pZ0.05 level even if we allowed for

searching over all pairs of voxels. However, the PCA

analysis shows no evidence of this connectivity

(figure 1).

For the extensive correlation, the t statistic for

correlation of the seed voxel with the voxel at the centre

of the anterior component is 1.56, which is not

significant even without correcting for searching.
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The maximum t statistic is still not significant at 4.23.
However, the PCA analysis clearly shows the con-
nected regions (figure 2).

The lesson we learn from this is that SVD (PCA) is
good at detecting extensive regions of connected
voxels, whereas thresholding correlations is good at
detecting focal regions of connected voxels.
5. APPLICATION
We apply the above methods to functional data, fMRI
resting state networks and anatomical data of cortical
thickness.

(a) fMRI resting state network

A subject was given a 9 s painful heat stimulus,
followed by 9 s rest, then 9 s warm (neutral) stimulus,
followed by 9 s rest, repeated 10 times as fully
described in Worsley et al. (2002). The sample size of
120 frames was acquired at TRZ3 s; the first three
were discarded leaving NZ117. A linear model was
fitted to account for the hot and warm block stimuli
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Figure 3. fMRI resting state network. Inside the mid-cortical surface (transparent), the first principal component of the
whitened residuals is thresholded at G0.5 of its maximum value (yellow, blue-green blobs). The ends of the rods join voxels
where the auto-correlation SPM C of fMRI residuals exceeded tZG0.7 (higher than the pZ0.05 threshold of tZG0.563). Only
six-dimensional local maxima are shown. Red rods indicate positively correlated voxels; blue rods indicate negatively correlated
voxels (there is only one). Note that the red rods tend to join similarly coloured principal component regions, mostly the blue-
green blobs.
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(convolved with an hemodynamic response function

(HRF)), and the drift was modelled as a cubic in the

acquisition time. The residuals from this linear model,

whitened to remove temporal correlation (Worsley et al.
2002), were used for further analysis, leaving nZ111

null d.f.

The search region RZS is the same region of the

brain used in the simulation in §4. From equation (2.2)

with nZ111 null d.f., the pZ0.05 two-sided threshold

for C is tZG0.563 (since we are interested in both

positive and negative correlations). There were too

many correlations above this threshold to display, so

figure 3 shows only six-dimensional local maxima

above tZG0.7 ( p!5!10K9).

Also shown in figure 3 is the first principal

component of the time!voxel matrix of the whitened

residuals, thresholded at G0.5 of its maximum value.

This also reveals regions that are similarly correlated. In

fact, the positive auto-correlations tend to join regions

with either high (yellow) or low (blue-green) principal
Phil. Trans. R. Soc. B (2005)
components, and negative auto-correlations tend to
join regions with different principal component values.

The main feature present in these patterns of
connectivity is a strong right–left connection between
regions close to the auditory cortex, and between left
and right occipital regions. An explanation is that the
subject might be processing random auditory (such as
scanner noise) and visual information that is activating
both right and left regions simultaneously, thus
inducing a positive correlation between these regions.
Some of the short-range in-plane connectivity, most
evident on the left anterior outer cortex, may be owing
to uncorrected head motion, which would induce
apparent correlations between neighbouring outer
cortex voxels.
(b) Cortical thickness

We illustrate the method on the cortical thickness of
NZ321 normal adult subjects aged 20–70 years,
smoothed by 20 mm FWHM; part of a much larger
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Figure 4. Connectivity of cortical thickness. (a) Cortical thickness of one subject, smoothed by 20 mm, plotted on the average of
the NZ321 mid-cortical surfaces. (b) First principal component of the subject!node matrix of residuals removing a gender
effect. The ends of the rods join nodes where the auto-correlation SPMC of cortical thickness exceeded tZG0.338 (nZ319 d.f.,
pZ0.05, corrected). Only four-dimensional local maxima inside the same hemisphere are shown. (c) Back view, and colour bar:
yellow to red rods indicate positively correlated nodes; blue rods indicate negatively correlated nodes. (d) Top view. Note that red
rods tend to join similarly coloured principal component regions, whereas blue rods tend to join differently coloured principal
component regions. (e, f ) same as (c,d ) but removing an age effect and age–gender interaction (nZ317), which also removes
some of the effective connectivity.
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dataset fully described in Goto et al. (2001) and

analysed in Worsley et al. (in press). The data on one

subject are shown in figure 4a. We removed a gender

effect, and then calculated the auto-correlation SPM,

C, for all pairs of the 40 962 triangular mesh nodes,

ignoring pairs of nodes that were too close. The

search region RZS is the whole cortical surface, with

DZEZ2, Resels0(S)Z2, Resels1(S)Z0 (since a closed

surface has no boundaries) and Resels2(S)Z759 (see

Worsley et al. 1999). From equation (2.2) with nZ319

null d.f., the pZ0.05 two-sided threshold for C is

tZG0.338 (since we are interested in both positive and

negative correlations). Figure 4b–d shows only four-

dimensional local maxima above t inside the same

hemisphere.
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The cortical surface is colour coded by the first

principal component of the subject!node matrix of

residuals, removing a gender effect. This also reveals

regions that are similarly correlated. In fact, the positive

auto-correlations tend to join regions with either high

(red) or low (blue) principal component, and negative

auto-correlations tend to join regions with different

principal component values. Figure 4e, f shows the

same analysis but removing a linear age effect and an

age–gender interaction, so that nZ317 null d.f. It is

noticeable that many of the correlations now disappear,

which demonstrates that they were induced by age

effects. For example, if two regions become thinner

over time, then this will induce an apparent positive

correlation between these two regions. This illustrates
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the importance of removing all fixed explanatory
variables before carrying out a functional connectivity
analysis.
6. DISCUSSION
Our comparison of detecting connectivity by threshold-
ing correlations and SVD is only qualitative. From a
theoretical point of view, very little is known about the
stochastic behaviour of SVD and, in particular, there is
no known way of thresholding SVD components to
control the specificity. The only thing known about
thresholding correlations is its specificity, not its
sensitivity. A quantitative treatment would have to
resort to extensive simulations, which are beyond the
scope of this paper.

Nevertheless, our limited examples show that
thresholding correlations is good at picking up focal,
highly localized networks of connectivity, which can be
completely missed by SVD. On the other hand,
extensive regions of voxels that covary together and
are correlated either positively or negatively with other
extensive regions are unlikely to be picked up by
thresholding correlations, but they can be qualitatively
detected by SVD. We expect ICA to perform in a
similar way to SVD with respect to focal and extensive
regions of connected voxels, whereas we expect
clustering, particularly the single-linkage types, to
behave in a similar way to thresholding correlations.

Why do techniques like SVD and PCA give better
detection for extensive regions of connected voxels?
The answer to this is not yet fully understood because
no theoretical results are available. But, on the other
hand, it is clear why thresholding correlations should be
good at detecting focal regions of connected voxels.
The answer is obvious—if, for example, two small
regions are perfectly correlated (CZ1) then they will
always be detected by thresholding correlations, no
matter what threshold is used. But if they are very focal,
their contribution to the SVD will be drowned by the
random contributions from all other unconnected pairs
of regions, and it is unlikely that they will emerge in the
first few components.

A natural question to ask is how many SVD
components we should look at. Of course the more we
take, the more complete a description we obtain, but
then the interpretation becomes harder. In principle, we
should need at least as many components as there are
isolated sub-networks. In other words, if three regions
R1, R2, R3 are all connected, and three further regions
R4, R5, R6 are connected, but there are no connections
between {R1,R2,R3} and {R4,R5,R6}, thenwewould at
need at least two SVD components to capture this
connectivity structure, and more if the strengths of the
connectivities differ within the two sets of regions. Since
we never know the number of such sub-networks in
advance, then we never know howmany components to
retain.A formal test is difficult because of thepresenceof
spatial correlation. In practice, we tend to look for the
turning point in the plot of per cent variance explained
versus component, beyond which the per cent variance
explained does not seem to decrease markedly.

It is worth noting what SVD produces for pure noise
data, where the only correlations are local spatial
Phil. Trans. R. Soc. B (2005)
correlations. It can be shown that if the spatial
correlations are stationary (the same everywhere) and
we have enough data (time points or subjects), then the
SVD components are nothing but the Fourier basis
functions in order of the power spectrum of the spatial
correlation. Typically what happens in well-Gaussian-
smoothed brain imaging data is that the first com-
ponent is an anterior–posterior trend, the second is a
right–left trend, the third is a superior–inferior trend
and the rest are high-frequency spatial trends. This is
because the dominant frequencies of Gaussian-
smoothed data are the lowest frequencies. The conclu-
sion is that if you see such SVD components there is
good reason to suspect that there is no connectivity in
the data (other than spatial smoothness).

We might ask what neuroscientific questions are
better addressed using SVD and which are better
addressed using thresholded correlations. The answer
is to use both, since they are sensitive to different
things. The main advantage of thresholding corre-
lations over all other methods is that we can rigorously
set the threshold to control the specificity.
APPENDIX A
EC density of the cross-correlation SPM

The EC density of the cross-correlation SPM in dZ0,
eZ0 dimensions is just the upper tail probability of
the Beta distribution with parameters 1/2, (nK1)/2,
where n is the null d.f., evaluated at t2. For dO0, eR0
and nOdCe, it is

ECC
d;eðtÞZ

log 2

p

� �ðdCeÞ=2 ðdK1Þ!e!2nK2

p

!
XbðdCeK1Þ=2c

kZ0

ðK1ÞktðdCeK1K2kÞð1K t2ÞðnK1KdKeÞ=2Ck

!
Xk
iZ0

Xk
jZ0

G
nKd

2
C i

� �
G

nKe

2
C j

� �� �

! i!j!ðkK iK j Þ!ðnK1KdKeC iC jCkÞ!
� �K1

! ðdK1KkK iC j Þ!ðeKkK jC i Þ!
� �K1

;

where b$c rounds down to the nearest integer, terms with
negative factorials are ignored and ECC

e;dðtÞZ ECC
d;eðtÞ.

Note that the EC density in Cao & Worsley (1999)
differs from that given here by a factor of (4 log 2)(dCe)/2.
This is because the p-value approximation in Cao &
Worsley (1999) is expressed in terms of Minkowski
functionals (intrinsic volumes) whereas here the p-value
(equation (2.2)) is expressed in resels. The summations
have also been rearranged for easier numerical
evaluation.
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