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ABSTRACT 
 

 

 

Image segmentation, or the extraction of the boundaries of objects, is one of the most 

important problems in computer vision and image processing. As a high-level technique for 

boundary identification, active contours are used extensively for segmentation purposes.  

Two different active contour approaches, i.e., parametric active contours and discrete 

dynamic contours, were used and compared for the segmentation of middle-ear images. We 

used histological and Magnetic Resonance Microscopy (MRM) image datasets for our 

experiments.  

Parametric and discrete dynamic contours show similar boundary identification results for 

the histological and MRM datasets. Gradient, Gradient Vector Flow (GVF), and the gradient 

plus pressure were used as the external force. The gradient has the disadvantage of having a 

restricted capture range. Two solutions for improving the capture range, gradient vector flow 

and pressure force, were compared. Although GVF provides a good capture range, it 

sometimes wrongly identifies the low-contrast boundaries. It was also found that GVF may 

wrongly identify the boundaries of close neighbouring structures. As an alternative, pressure 

forces have shown promising results for histological and MRM middle-ear images. For the 

same initial contours, a larger number of iterations is required for the parametric contours to 

converge to the boundary than with the discrete dynamic contours, when the gradient is 

used as the external force. However, when using GVF and gradient plus pressure, parametric 

active contours require a smaller number of iterations for active contour convergence, 

compared with the discrete dynamic approach.  

The use of open contours was demonstrated for shared boundaries and thin structures, in 

addition to the usual closed contours. 



 iii

RÉSUMÉ 
 

 

 

La segmentation d’image ou l’extraction des contours d'un objet est une des tâches les 

plus importantes en traitement des images. Les contours actifs font partie des techniques de 

haut niveau fréquemment utilisées dans ce but. 

Dans ce mémoire, nous comparons deux approches différentes, fondées sur les contours 

actifs, pour la segmentation de l’oreille moyenne dans des données d’images histologiques et 

des données d’images de microscopie par resonance magnétique. 

Ces deux approches, les contours actifs paramétriques et les contours dynamiques 

discrets, fournissent des résultats semblables. Différentes forces externes sont testées : le 

gradient, le flux de vecteurs gradients et le gradient plus la pression. L’utilisation du gradient 

ne permet qu’une plage de capture limitée. Pour remédier à ce défaut, nous comparons les 

approches utilisant le flux de vecteurs gradients et utilisant la pression. Bien que le flux de 

vecteurs gradients possède une bonne plage de capture, il est peu efficace sur les contours de 

faible contraste et sur les contours d’objets voisins. Au contraire, les forces de pression 

fournissent des résultats encourageants sur nos images histologiques et nos images de 

microscopie par résonance magnétique de l’oreille moyenne. Étant donnés des contours 

initiaux identiques, un plus grand nombre d’itérations est requis pour les contours actifs 

paramétriques par rapport aux contours dynamiques discrets, dans le cas où le gradient est 

utilisé comme force. Dans le cas où le flux de vecteurs gradients ou le gradient plus la 

pression sont utilisés, on observe le phénomène inverse.  

Pour la segmentation des structures fines et des contours communs à deux structures, 

nous utilisons des contours ouverts, et dans les autres cas, nous utilisons des contours 

fermés. 
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1. INTRODUCTION 
 

 

Image processing and computer vision have become important within the past two 

decades. Image processing and computer vision techniques aim to improve the pictorial 

information for human interpretation and the processing of image data for autonomous 

machine perception.  

Image segmentation, or identification of the boundaries of objects in images, is one of 

the most important problems in computer vision and image processing. The applications of 

segmentation techniques range from medicine (e.g., locating a lesion) to industry (e.g., robotic 

vision) and the military (e.g., target detection). With medical imaging playing an increasingly 

prominent role in the diagnosis and treatment of disease, segmentation techniques have been 

applied for extracting clinically useful information about anatomic structures through 

modalities such as x-ray CT (Computer Tomography), MRI (Magnetic Resonance Imaging), 

PET (Position Emission Tomography), ultrasound and other modalities (Stytz et al., 1991; 

Ayache, 1995; Bizais et al., 1995; McInerney & Terzopoulos, 1996; Yezzi et al., 1997). The 

segmentation of the images can be performed either manually or using image processing and 

computer vision techniques. In manual segmentation a skilled operator, using a computer 

mouse or track ball, traces the structures of interest on each slice of the image dataset. 

Manual segmentation benefits from anatomical knowledge that the user employs for 

boundary identification of the objects. Manual segmentation, however, suffers from several 

drawbacks, such as the difficulty in achieving reproducible results, and the facts that it is time 

consuming and open to operator bias (McInerney & Terzopoulos, 1996). The computer-

vision based type of segmentation relies more on the mathematical concepts that are applied 

for boundary identification. 

A wide variety of mathematical and computational approaches has been proposed for 

solving segmentation problems. Segmentation techniques are classified into low-level and 

high-level techniques. Low-level techniques, such as traditional edge detectors, region 

growing and mathematical morphology, use only image information. These techniques are 

generally computationally fast and may be simple but they require a considerable amount of 

expert interactive guidance. Furthermore, automating these model-free approaches is 

difficult because of the shape complexity and variability within and across anatomical 
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structures. In general, the under-constrained nature of the segmentation problem limits the 

efficacy of approaches that consider local information only. Noise and other image artefacts 

can cause incorrect regions or boundary discontinuities in objects identified by these 

methods (McInerney & Terzopoulos, 1996). 

Active contours, or snakes (Kass et al., 1986), are high-level techniques that overcome 

many of the limitations of low-level image-processing techniques by applying information 

about the boundaries as part of an optimisation procedure. Active contours are energy-

minimising contours that are generally controlled by two energy terms. There are force terms 

associated with the energy terms, i.e., internal and external forces. The internal force is 

computed based on the local shape of the contour and preserves the smoothness of the 

contour. The external energy that drives the active contour to the boundary is based on the 

image information (e.g., any conventional edge detection technique). The interactions of the 

force terms cause the active contour to evolve from an initial position (e.g., drawn by the user 

with a mouse) and it converges to the optimal position, i.e., on the structure boundary, where 

forces balance one another. 

Active contours are used extensively for segmentation and a number of alternative 

approaches have been proposed, such as geometric deformable models (Miller, 1990), 

geometric active contours (Caselles et al., 1995 & Malladi et al., 1995) and discrete dynamic 

contours (Lobregt & Viergever, 1995). Active contours have been applied to many medical 

imaging modalities, including x-ray, angiography, MRI, PET and ultrasound (McInerney & 

Terzopoulos, 1996). “Active contours have been used to segment, visualise, track and 

quantify a variety of anatomic structures, ranging from macroscopic to microscopic scale, 

including the brain, heart, face, kidney, lungs, stomach, liver, skull, vertebra, arteries, 

neurons, chromosomes and objects such as brain tumours and a foetus” (McInerney & 

Terzopoulos, 1996).  For instance, Leymaire (1990) used active contours for tracking the 

deformation and locomotion of cells in the plane. Cohen (1991) used them on a set of 

successive cross sections of ultrasound and magnetic resonance images, leading to 3D object 

reconstruction. Ranganath (1995) utilised active contours for contour extraction in cardiac 

MRI images. Lobregt & Viergever (1995) used active contours for segmentation of femurs 

from x-ray CT images, brain tumours from MRI images and blood vessels from ultrasound 

images. Davatzikos et al. (1995) & Atkins et al. (1998) used active contours for segmentation 

of the brain from MRI images. Wang et al. (1998) applied active contours for segmentation 
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of MRI images of heart ventricles, blood vessels, brain, and bone. Valdés et al. (2000) 

performed trachea segmentation for the respiratory system using CT images. 

Because of the extensive successful applications of active contours in the medical 

imaging field, we were interested in applying active contours for segmentation of middle-ear 

images. Middle-ear images include tiny objects such as ligaments, muscles and bones that 

require precise boundary identification prior to labelling, registration, 3-D reconstruction and 

modelling. We used grey-scaled histological and magnetic resonance microscopy (MRM) 

datasets of the middle ear for our experiments. Two different active-contour approaches 

were used and compared for segmentation of middle-ear images. These techniques include 

the traditional active contours (parametric contours) (Kass et al., 1986) and discrete dynamic 

contours (Lobregt & Viergever, 1995). The reason we chose discrete dynamic contours was 

because of the simplicity of the implementation, and the fact that Lobregt & Viergever 

(1995) claimed that the discrete dynamic contours do not exhibit problems such as shrinking 

and clustering that exist with traditional parametric contours. We were interested to test the 

discrete dynamic contours with our datasets. Although the gradient is usually a successful 

method when used for computation of external forces, it has a limited capture range. We 

compared the gradient with two other techniques, i.e., pressure (or balloon) force (Cohen, 

1991) and gradient vector flow (Xu & Prince, 1997), that have been suggested to improve 

the capture range of the gradient. We did experiments with both closed and open contours. 

In closed contours the starting and ending vertices are connected while in open contours 

they are unconnected.  

 

Chapter Two introduces conventional edge-detection and edge-enhancement techniques 

as low-level techniques. Some of these techniques are referred to in the later chapters. In 

Chapter Three, a history of active contours is followed by the definition and discussion of 

some different approaches. Chapter Four describes the implementation of the two active-

contour approaches, i.e., parametric and discrete dynamic, that we used for our experiments. 

Chapter Five introduces the materials, i.e., the image datasets, that we used for our 

experiments; and Chapter Six presents the results of the comparisons of the active-contour 

approaches, using gradient, gradient vector flow and pressure force, on the image datasets.  

The conclusions and future work are discussed in Chapter Seven. 
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2. CONVENTIONAL EDGE-DETECTION AND 
EDGE-ENHANCEMENT TECHNIQUES 

 

 

In digital image processing, a grey-level image is considered as a 2-D array, e.g.,  I x y( , ) , 

composed of picture elements (pixels), each having a magnitude and a spatial location 

represented by x  and y  coordinate components. An edge is defined by changes of grey 

level between neighbouring pixels. Depending of the rate of change (abrupt or slow) of grey 

level between neighbouring pixels, edges can be called strong or weak.  

Edge detectors are applied to an image to discriminate the edge pixels from non-edge 

pixels. The result will be an edge map, which gives the data for tracing the boundaries of the 

regions of interest in an image. Edge enhancers are used to intensify the edges but they do 

not discriminate between edge and non-edge pixels. The gradient and the Laplacian of 

Gaussian (LOG) operators are edge enhancers, and thresholding and the Canny operator are 

edge detectors.  

  

In the following sections we review these techniques. Some of them are later used in 

Chapter Three for active contours. 
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2.1 Gradient 
Using partial derivatives, the gradient of a scalar field (a function) generates a field of 

vectors. The gradient of an image gives the rates of change of grey level per unit distance in 

the directions of the coordinate axes. The gradient of the image is written as: 
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as: 
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where the angle is measured with respect to the x  axis at each location. 

The gradient has three properties that are of concern in image processing. First, if there 

is little or no change of grey level in neighbouring pixels (e.g., homogeneous regions) the 

gradient for that location will be zero or a small value close to zero. Second, at a location on 

an edge (boundary) where an abrupt change of grey level exists, the gradient of the image at 

that location will have a large magnitude depending on the rate of grey-level change. Third, 

according to the gradient theorem (Kreyszig, 1993), the gradient of an image at a certain 

point (e.g., pixel) on a constant surface (e.g., an edge) is a vector normal to that surface at that 

point.  

In digital image processing, the gradient is computed using spatial filters that are 
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convolved with the images. The filters are implemented to act as partial derivatives, in the 

form of pairs of masks, at every pixel location. Each pair is used to calculate the partial 

derivatives in two orthogonal directions. The mask is centred and superimposed on each 

pixel, covering some neighbouring pixels depending on its size. The products of mask 

weightings and the corresponding pixels are then summed up and the result is considered as 

the intensity of the pixel corresponding to the centre of the mask. The filters have the 

property that the sum of the weights is equal to zero, so they satisfy the gradient property of 

giving a zero value for homogeneous regions.  Below, examples of such masks are provided:  
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Figure 2.1 shows an image. Figure 2.2 shows the image filtered by the above horizontal 

and vertical gradient operator, Robert operators and Sobel operator. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
Figure 2.1: An MRM image used for testing gradient operators. 
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Figure 2.2: Examples of spatial filtering using gradient operators on the image from Figure 2.1: (a) & (b) by 
horizontal and vertical gradient operators, (c) & (d) by a diagonal pair Roberts operator, and (e) & (f) by 
horizontal and vertical Sobel operators, respectively. 

(a) 

(c) 

(e) 

(b) 

(d) 

(f) 
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Figure 2.3 shows an example of the magnitude of the gradient produced by applying 

Sobel operators to a given image (Figure 2.1). 

 

 

 

 

 
 

 

 

 

 

 

  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.3: Example of the magnitude of the gradient of an image: original image (top), and the magnitude of 
the gradient of the image (bottom). 
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2.2 Laplacian Operator 

Similar to the gradient operators, the Laplacian operator is another edge enhancer based 

on the derivatives of the image. The gradient operator uses the first spatial derivative of an 

image, while the Laplacian operator ( 2∇ ) is based on the second derivative of an image: 

 

∇ = +2
2

2

2

2I I
x

I
y

∂
∂

∂
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x y .             (2.4) 

 

As in the gradient operator, the Laplacian ( ∇ 2 I ) computes the partial derivatives of image 

values in each location (pixel) with respect to the x  and y  coordinate axes.  

Noise contains a wide range of frequencies: low and high frequencies. The derivative-

based operators (the gradient and Laplacian operators) enhance high frequencies that can be 

edge points or high frequency noise. Intensifying noise is an undesired result. To deal with 

this issue, Marr & Hildreth (1980) proposed the Laplacian of Gaussian (LOG) operator. This 

operator is a combination of a 2-D Gaussian kernel and the Laplacian. The 2-D Gaussian 

(bell-shaped) kernel has a smoothing effect on the image since it is a low-pass filter and has 

the characteristic of averaging among the neighbouring pixels within an image. By 

smoothing an image, the Gaussian removes noise. Then, the Laplacian (i.e., the second 

derivative) will high-pass filter the image and intensify edges. However, this technique does 

not guarantee that the noise is completely removed and that only the edges are intensified. 

Figure 2.4 shows a Laplacian of Gaussian kernel.  
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Figure 2.4: Laplacian of Gaussian function: (right) cross section, (left) intensity function image.  

 

The LOG operator can be defined as: 
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where σ  is the standard deviation of a 2D Gaussian kernel, i.e., h x y( , ) , and ∇ 2h x y( , )  

represents the Laplacian of the Gaussian kernel. The Laplacian of Gaussian can be 

implemented as a spatial filter that is convolved with an image. As seen in Figure 2.5, the 

spatial filter must be designed to assign a high positive weighting in the centre and negative 

values, with a smaller absolute value than the centre weighting, surrounding the centre 

weighting, and zero for other weightings, for example:  
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The standard deviation of the Gaussian kernel determines the smoothness of the LOG 

filter. By increasing the standard deviation the filtered image becomes smoother. Choosing 

the value for σ  depends on the amount of noise in the image. Figure 2.5 illustrates the result 

of an LOG operator on an image. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.5: Example of an image filtered by an LOG operator: original image (top), the results of applying an 
LOG operator on the image (bottom). 
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2.3 Thresholding 

Thresholding is a simple technique for edge detection and image segmentation. In this 

technique, first a threshold value (T ) is chosen in the grey-level range of the image and 

pixels over and under the threshold value are marked differently. Thresholding can be 

defined as follows: 
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=→≤
=→>

yxITyxI
yxITyxI

T

T     (2.6) 

 

where ),( yxIT  is the image after thresholding. Hence, all pixels with intensities larger than 

T  are set to a certain number, e.g., 1, and the rest are set to zero. Consequently, the result of 

thresholding is a binary image.  

Thresholding can be single-level, two-level or multi-level. In single-level thresholding 

only a single thresholding value is chosen, as described above. In the two-level method, two 

threshold values, i.e., low ( lowT ) and high ( highT ) threshold values are chosen. Pixels with 

intensities lying in this range are considered as edge points and are set to a certain value, e.g., 

1, and the rest will be set to 0. Two-level thresholding can be represented as follows: 
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Choosing thresholds values is very important since edge points having intensities even 

slightly lower or higher than a low or high threshold may be excluded (set to zero) , which 

results in an edge with missing parts. The threshold values are not easily chosen, and they are 

mostly found based on trial and error. Figure 2.6 shows examples of single-level and two-

level thresholding. Thresholding does not always give a good result. An example of edges 

with missing parts is shown in Figure 2.6 (bottom). 
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Figure 2.6: Examples of single-level and two-level thresholding: original image (top), and the image after single-
level (middle) and two-level (bottom) thresholding. Edges missing parts are seen in the bottom image. 
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2.4 Canny Operator 

It is important that edges that occur in the image should not be missed, and that the edge 

points should be well localised. That is, the distance between the points marked by the 

detector and the “centre” of the true edge should be minimized (Canny, 1986). 

Low-level techniques such as gradient, thresholding and LOG do not always give good 

results, especially in case of noisy images or images with a wide range of pixel intensities on 

edges. Edges with parts missing often happen with edges having a wide range of intensities 

when using low-level edge-detection techniques.  

Canny (1986) proposed a more powerful edge detector than the above-mentioned low-

level edge detectors. One aim of this operator is to provide the points marked as edge points 

that are the centre of the true edge (Canny, 1986).  

The Canny operator consists of three processes. First, a low-level edge-enhancer is 

applied for noise reduction and edge enhancement. Second, two-level thresholding is used to 

discriminate between edge and non-edge pixels in order to produce a continuous edge 

outline. Afterwards, the edge-thinning process can be applied to reduce the width of edges 

to one pixel that is at the centre of the edge.   

Since in any image some amount of noise may exist, it is very important to reduce the 

noise. To do this, an LOG filter is applied to the image for noise reduction. The LOG filter 

also intensifies the edge points. The next step is an adaptive two-level thresholding process 

with hysterisis. The purpose of using hysteresis is to ensure that  edges are not broken up 

into multiple edge fragments. 

The final step is the edge-thinning process. Based on the gradient magnitude of the 

thresholded image, the edge-thinning process searches for the edge points in the direction of 

the gradient, that is, normal to the edge at the edge points. Then, in this process, the centre 

pixel or pixels of the edge in the direction of the gradient are set to 1 and the rest of the 

pixels to zero. Consequently, the result will be a binary image containing the edges or the 

outline of the regions. Figure 2.7 shows an edge map produced by the Canny operator. 
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Figure 2.7: Example of edge map using the Canny operator: the original image (top), the result of the Canny 
operator on the image (bottom). 
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3. ACTIVE CONTOURS 
 

 

3.1 Introduction and history 
Low-level segmentation techniques serve to simply analyse the image by drastically 

reducing the amount of data to be processed. However, by reducing the data some necessary 

image information may be lost. In addition, given a large amount of noise or low contrast, 

the image information by itself may not be sufficient to result in a successful segmentation. 

As an alternative, high-level techniques are used, although they are more sophisticated and 

computationally more expensive than the low-level techniques. Active contours, also known 

as snakes or deformable contour models (Kass et al., 1986), have proven to be an effective 

method in line and edge detection, segmentation, shape modelling and motion tracking 

(Kass et al., 1986). 

Active contours were originally proposed by Kass et al. (1986). Active contours are an 

example of a general technique of matching a deformable model to an image boundary by 

means of energy minimisation (Kass et al., 1986). Energy minimising models have a rich 

history in computer vision going back at least to the 1970s (McInerney & Terzopoulos, 

1996):  

The name “deformable models” stems primarily from the use of elasticity 

theory at the physical level, generally within a Lagrangian dynamics setting. The 

physical interpretation views deformable models as elastic bodies which respond 

naturally to applied forces and constraints. In the Lagrangian setting, the 

deformation energy gives rise to elastic forces internal to the model. Taking a 

physics-based view of classical optimal approximation, external potential energy 

functions are defined in terms of the data of interest to which the model is to be 

fitted. These potential energies give rise to external forces, which deform the 

model such that it fits the data. The mathematical foundations of deformable 

models represent the confluence of geometry, physics, and approximation theory. 

Geometry serves to represent object shape, physics imposes constraints on how 

the shape may vary over space and time, and optimal approximation theory 

provides the formal underpinnings of mechanics for fitting the models to 

measured data.  
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“The notion of snake for active contours was inspired by the way living snakes slither 

while minimising their energy” (Kass et al., 1986). 

The original parametric active contours (Kass et al., 1986) are elastic curves or splines 

defined in an image domain and have a dynamic behaviour that evolves from an initial 

position in the image to converge to the boundaries of the objects. The initial position is 

provided either by interactive action of the user or by a higher-level process (Kass et al., 

1986). Based on the Lagrangian formulation of motion, the dynamic behaviour of the elastic 

curve is associated with the energy functional of the curve. The energy functional is 

composed of two energy terms, i.e., the internal and the external energy terms. The internal 

energy term is based on the curve itself. The external energy terms arise from the image 

information. There are force terms that are associated with the energy terms, i.e., the internal 

and external forces. The internal force term preserves the smoothness and is composed of 

two force constraints: tension and rigidity. The external force drives the active contour 

toward the boundary and is derived from image information, e.g., the gradient of the image. 

The interaction of the force terms causes the active contour to evolve and the evolution 

process is terminated when the terms balance each other where the energy functional is 

minimised (i.e., on the object boundary). 

The application of traditional active contours to identify boundaries of the objects is, 

however, not without limitations. One problem lies with the external forces that have a 

limited capture range. This is because the external force is computed based on the 

conventional edge detection techniques (e.g., a gradient operator). The gradient of the image 

has a limited capture range and the active contour must be located close to the boundary in 

order to converge (Xu & Prince, 1997). Therefore, if the active contour is not located close 

enough to the boundary, it may not converge to the boundary. The internal force not only 

cannot solve this problem, but it also has a shrinking behaviour that may lead the active 

contour to implode, or at least slows the convergence of the active contour to the boundary 

(Cohen, 1991; Xu & Prince, 1997). Choosing appropriate parameters for tension and rigidity 

constraints is very difficult in practical applications. In addition, the traditional parametric 

contours are computationally expensive due to the way they are implemented (Menet et al., 

1990). 

Variant implementation methods such as B-snakes (Menet et al., 1990), Fourier snakes 

(Staib & Duncan, 1992) and finite-element snakes (Cohen & Cohen, 1993) have been 
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proposed in an effort to improve aspects of the original implementation of parametric 

approach (e.g., to decrease initialisation sensitivity, to simplify the computation, and to get rid 

of the internal force parameter). In all these methods a curve is considered in segments. For 

instance, in B-snakes and finite-element snakes, the curve is segmented into polynomial basis 

functions, and in the Fourier snakes the curve is segmented into a set of trigonometrical 

basis functions. 

Two other alternative approaches have also been proposed for active contours: 

geometric deformable models (Miller, 1990) and discrete dynamic contours (Lobregt & 

Viergever, 1995). Although the names of these approaches may seem different from the 

parametric approach, they basically use the same principles as the traditional parametric 

contours. In all these approaches the curve is considered as a set of points or vertices which 

are connected by straight lines or edge segments. All the active contours have a dynamic 

behaviour that leads the active contour to evolve from an initial position to a final position 

(where a boundary is located). The dynamic behaviour of the active contour is based on the 

interaction of a set of constraints or forces that is intended to minimise a cost function, 

energy functional or a force term. There are constraint terms, comparable to the internal 

force, that are defined based on the active contour and are responsible for preserving its 

shape and smoothness. Also, there is an image constraint which is usually based on the 

gradient of the image.  The major differences among all these active-contour methods are in 

the way the internal forces, or the equivalent constraint terms, are viewed. For instance, in 

the traditional parametric contours the components of the internal force, the tension and 

rigidity, are derived from the locations of and the distances between the vertices of the 

contour. In geometric deformable models (Miller, 1990) the internal constraints are based on 

the angles between the adjoining edge segments and their lengths, which are again derived 

from the locations of the neighbouring vertices. In discrete dynamic contours (Lobregt & 

Viergever, 1995) the internal force is based on the angles between adjoining edges and the 

normal vectors to the vertices, which are once more computed based on the locations of 

vertices. 

“Since in the active-contour approaches the external force is based on the gradient of the 

image, these active contours still suffer from a limited capture range for the external force. 

Also, when an image has a complex background, the active contour may get confused and 

finding the correct object boundary from the gradient magnitude only is not easy” (Xu & 
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Prince, 1997). Various methods such as pressure force or balloon (Cohen, 1991), attraction 

potential forces (Cohen & Cohen, 1993) and gradient flow vector (GVF) (Xu & Prince, 

1997) have been suggested to significantly increase the external force capture range. These 

methods are described in the following sections. 

As a different approach, geometric active contours (Caselles et al., 1995; Malladi et al., 

1995) have been proposed based on the curve-evolution theory and the level-set method. 

Based on this theory a curve (active contour) is shrinking in perimeter in order to minimise 

its length. The minimisation of the curve is driven by the interaction of functions defined 

based on the curve and a function computed based on the gradient of the image. Using the 

level-set method makes it possible for the active contours to simultaneously converge to 

several objects. 

In section 3.2, we only review and discuss the traditional parametric contours, the 

internal and external forces and the constraints that are applied to improve the capture range 

of the gradient. In sections 3.3 to 3.5, the geometric deformable models by Miller (1990), 

geometric active contours by Caselles et al., (1995) & Malladi et al., (1995), and discrete 

dynamic contours (Lobregt & Viergever, 1995) will be presented in more detail. We used the 

last approach for our experiments that are reported in Chapter 6 and it is discussed in more 

detail. 
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3.2 Parametric contours 
In the parametric approach, an active contour is represented as a curve or spline, 

i.e., ))(),(()v( sysxs = , including vertices. x  and y  represent the coordinates of the 

vertices and are  functions of the normalised arc length 10 ≤≤ s . The active contour has a 

dynamic behaviour that deforms from an initial position and hopefully converges to the 

boundary of the object. An energy functional (i.e., snakeE* ) composed of energy terms defines 

this behaviour: 

 

∫∫ +==
1

0

1

0

* ))(())(())(( dssEsEdssEE extintsnakesnake vvv   (3.1) 

  

where intE  and extE  denote the internal and external energy terms associated with the active 

contour, respectively. The internal energy term is computed based on the local shape of the 

contour and preserves the continuity and the smoothness of the active contour. The external 

energy term is computed based on the image information and it drives the active contour to 

the boundary. In the parametric approach, the general-form energy functional of the active 

contour, i.e., Equation 3.1, can be represented as: 
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Parameters α  and β  are the coefficients of the internal energy term and represent tension 

and rigidity, respectively. 

The deformation process of the active contour is driven by minimisation of the energy 

functional. An active contour that minimises the energy functional (Equation 3.2) must 

satisfy the Euler equation (Kass et al., 1986): 
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Equation 3.3 can be also viewed as a force balance so that the energies are associated 

with the forces (Xu & Prince, 1997): 

 

0=+ extint FF     

 

where     (3.4) 
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intF  and extF  denote the internal and external forces, respectively. In this way the 

deformation process can be explained based on the interaction of the force terms and the 

deformation stops when the forces balance each other, i.e., on the location of the boundary.  

As suggested in some publications (e.g., Xu & Prince, 1997), we prefer to use the force 

balance equation to explain the behaviour of the active contour, so it is simpler to 

understand the concept.  

The external force itself can be the image force, using only image information, or may 

include additional constraints such as a pressure force or a user-defined constraint force. We 

describe the forces associated with the energy terms in detail in the following sections. 

 

3.2.1 Internal force 
The internal energy term and the associated force, i.e., the internal force, preserve the 

smoothness and continuity of the active contour. According to Equation 3.4, the internal 

force is composed of the second and forth derivatives of the contour which are weighted by 



 23

α  and β  parameters, respectively. The second-order right-hand term, i.e., )(v s′′α , causes 

the active contour to behave like a membrane to resist stretching, and the fourth-order term, 

i.e., )(v s′′′′β , causes the active contour to act like a thin plate to resist bending. We refer to 

α  and β  as tension and rigidity parameters, respectively. The tension keeps the active 

contour contracted and the rigidity keeps it smooth.  

The active contour has inherently a tendency to shrink, which is related to the tension 

force. To explain this, the active contour can be considered as an ideal rubber band, with 

zero initial length and linear behaviour, to represent the tension force. If such a rubber band 

with any length other than zero (an active contour) is only affected by tension, it shrinks to a 

point. In the presence of only rigidity, by contrast, the active contour tends to be like a wire 

and cannot converge to the sharp corners. Consequently, various values for α  and β  

produce different results for an active contour, with the behaviour ranging from a rubber 

band to a rigid wire. The examples of different combinations of tension and rigidity 

parameters are provided in Chapter Six, Section 6.2.1.  

 

3.2.2 Image force 
While the internal force is responsible for preserving the shape of the active contour, the 

external force drives the active contour to the boundary. The external force is primarily the 

image force, computed based on the image itself, and a constraint force can optionally be 

added. The external force is represented as: 

 

constraintimageext FFF +=   (3.5) 

 

where imageF  and constraintF  are the image and constraint forces, respectively. One reason for 

applying a constraint force is the capture-range limitation that the image force may exhibit. 

The constraint force is used to provide a high-level guidance to the active contour, to 

expedite the active contour convergence to the boundary and improve the capture range of 

the image force (Feng & Gelenbe, 1998).  

According to Equation 3.4, the external force is the negative of the gradient of the 

image. In order to intensify the edges, prior to computing the gradient of the image, an edge 

detector or enhancer can be applied to the image. We compared the performances of the 
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edge-detection and edge-enhancement techniques in Chapter 2 as the external force for 

parametric active contours on different regions of an MRM image. These techniques were 

thresholding, LOG, gradient and Canny operator. The criterion for choosing the edge-

detector or edge-enhancement technique was the simplicity of computation. Based on the 

literature and our own results, we chose the gradient operator as an edge detector. The 

reasons for this choice are as follows: 

 

•  Thresholding is the least sophisticated technique in terms of computation among the 

mentioned techniques. The result of this technique is a binary image. Therefore, some 

grey-scale information which may be related to the boundary is lost by binarising an 

image. Apart from this issue, choosing a proper threshold value is based on trial and 

error and can differ from one image to another, or from one image slice to another in a 

single volume. In addition, in some cases, as shown in Figure 2.6, thresholding may 

result in edges with gaps. 

 

•  Although the Canny operator is known as a successful edge detector, this technique has 

some disadvantages. Firstly, it is the most complicated technique among the above-

mentioned edge detectors. Secondly, because of its thresholding process it produces a 

binary image, which is undesired. And finally, the edge-thinning process in the Canny 

operator may change the natural shape of the boundaries and may lead the active 

contour not to precisely identify the boundary. 

 

•  Similar to thresholding, choosing the appropriate value for the standard deviation of the 

LOG operator may vary from one image to another, depending on the noise content and 

image sharpness. This parameter is found by trial and error. We prefer to use LOG only 

as a pre-processing technique for enhancement of noisy images. 

 

•  The gradient operator is less complicated than the Canny operator, and in contrast to 

thresholding and LOG, there is no need for choosing any parameter (e.g., threshold or 

standard deviation).   
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3.2.3 Constraint force 
Using image information, the image force drives the active contour towards the 

boundary. This force can be computed based on any conventional edge detector and 

enhancer (e.g., thresholding, LOG, the gradient or Canny operator) to detect the objects’ 

boundaries.  

Since the image force computations are generally based on the gradient magnitude of the 

image, the active contour is attracted to contours with large gradients, i.e., strong edges. A 

disadvantage of the gradient technique is the limited capture range that it produces for the 

image force (Cohen, 1991; Xu & Prince, 1997). The limitation exists since the gradient 

technique results in a noticeable magnitude where there is an abrupt change in grey-scale 

(e.g., an edge pixel) but inside a homogeneous region the result of the gradient operator is 

zero or a small value close to zero. As a result, the active contour must be located close to 

the boundary in order to converge to it. 

Kass et al. (1986) introduced “springs” and “volcanos” as user-defined constraints that 

can be applied to an iterating active contour using a users’ interface programme. The user-

defined constraints are used to push the vertices ( selected by the user) relatively close to the 

boundary so that the active contour can converge to the boundary.  

A “spring” is modelled as a linear spring with a fixed point and a vertex to which it is 

connected, positioned by the user on the image. The user also chooses the vertex. The 

spring pulls the vertex towards itself with a force proportional to the distance between the 

spring point and the vertex: 

 

     )(F , iispring vsk −=   (3.6) 

 

where s  and v  are positions of the spring and the vertex, respectively, and k  is a weighting 

factor.  

As a constraint term, a volcano creates a pushing-out force that is applied to all vertices 

from a point c  inside the region of interest. At each vertex this force is inversely 

proportional to the distance between point c  and the vertex. In the case that a vertex is 

exactly on point c , this force is considered to be zero in order to prevent the division by 

zero. A volcano is defined as: 
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)(1F , cv
r iivolcano −=   (3.7) 

 

where v  and c  are the positions of a vertex and of point c , respectively. r is the distance 

between point c  and the vertex. 

 

A pressure force or balloon model (Cohen, 1991) was proposed as a constraint force to 

improve the capture range of the gradient. The pressure force is independent of the image 

information and defines the direction of the active contour deformation by inflating or 

deflating it. Using this technique, the external force is composed of the image and the 

pressure forces:  

 

image

image
pressureext F

F
kskF −= )(n   (3.8) 

 

where pressurek  is the pressure weighting and its positive or negative sign leads the active 

contour to inflate and deflate, respectively; )(sn  represents the unit vectors normal to 

vertices; k  is the image force weighting and the image force is the gradient of the image. 

The normalization to the image force is applied to intensify the boundary, especially when 

the boundary has low contrast.  

If the pressure force acts too strongly, the active contour may overwhelm weak 

boundaries, especially in the presence of contours with gaps (Xu & Prince, 1997). Therefore, 

the image force weighting (k ) must be larger than the pressure weighting ( pressurek ). This is 

because the image force should dominate the pressure force and stop the active contour at 

the location of the boundary; otherwise the pressure force will lead the active contour to 

pass the boundary.  
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3.2.4 Alternative image force 
 

Alternative techniques have been proposed to improve the capture range of the image 

force. An attraction potential force (Cohen & Cohen, 1993) was proposed as the external 

force. It is the negative gradient of a potential function that is computed using a Euclidean 

distance map which is based on the image information: 

 

)(vPFext −∇= .  (3.9) 

The Euclidean distance map can be computed in different ways, for example (Cohen & 

Cohen, 1993): 

 
2)()( vdevP −=    (3.10) 

 

where )(vd  is the distance between a point v  on the image and the nearest image edge pixel 

that is detected by an edge detector. )(vP  is the potential and the closest edge point has the 

greatest effect at a position v  (Cohen & Cohen, 1993). Similar to the image force produced 

by the gradient technique, the attraction potential forces also point normal to a boundary 

concavity and do not lead the active contour to converge to the concavity (Xu & Prince, 

1997).  
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3.2.5 Gradient Vector Flow (GVF) 
Xu & Prince found that pressure forces may overwhelm subjective contours, i.e., parts of 

a boundary with weak or zero contrast. They proposed Gradient Vector Flow (GVF) to 

improve the capture range of the image force, and found that it could be applied to 

subjective contours without overwhelming them. GVF involves a vector field derived by 

solving a vector diffusion equation which diffuses the gradient vectors of a grey-level image. 

The particular advantage of GVF is the ability to move into boundary concavities (Xu & 

Prince, 1997). 

 

The GVF field is defined to be the vector field )],(),,([),( yxvyxuyx =x  that minimises 

the energy functional (ε ): 
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The subscripts represent partial derivatives with respect to x  and y .  ),( yxf  is the image 

energy term that can be the gradient of the image. µ  is a weighting parameter, also called a 

regularisation (Xu & Prince, 1997) factor. It is applied to manage the trade off between the 

two terms of the integrand. When f∇  is small (e.g., in homogenous regions), the energy 

functional is dominated by the first term (sum of squares of the partial derivatives of the 

vector field) yielding a slowly varying field. This term is called the smoothing term. However, 

if f∇  is large, the second term dominates the integrand, and the term is minimised when 

f∇=x . In the latter case, Equation 3.11 keeps the x  nearly equal to the gradient of the 

image energy term when its gradient is large. Choosing µ  depends on the amount of noise 

in the image. The more noise is in the image, the larger µ  should be. This is because in the 

presence of noise the gradient increases and µ  should increase in order to control the trade-

off between the first term and the second term in Equation 3.11.  

The solution for the minimisation of the energy functional (Equation 3.11) is performed 

using the Euler equations (Xu & Prince, 1997):  
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where 2∇  represents the Laplacian operator. The above pair of equations can be solved by 

treating u  and v  as functions of time: 
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The coupled Equations 3.13 can be solved iteratively, in order to compute the GVF vector 

field. The GVF fields, i.e., u  and v , have converged when the value of the left-hand side of  

Equation 3.13 remains the same between successive iterations. Since the gradient of the 

image in the homogeneous regions is nearly zero, the second terms of the pair of equations 

(Equation 3.13) are zero. In such a case, u  and v  are determined by Laplace’s equation 

using the Laplacian operator ( 2∇ ) and the resulting gradient vector field is interpolated from 

the region’s boundary, reflecting a sort of competition among the boundary vectors (Xu & 

Prince, 1997). In other words, GVF is the result of mixing the gradient and Laplacian.  

The gradient vectors are normal to the boundary surface, but by combining Laplacian 

and gradient the result is not the normal vectors to the boundary surface. As a result of this, 

GVF yields vectors that point into boundary concavities, so that the active contour is driven 

through the concavities. Figures 3.1 & 3.2 show a quasi-oval object and an object with 

narrow concavities, respectively. The vector fields produced by the gradient and GVF 

technique are demonstrated in Figures 3.3 & 3.4.  
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Figure 3.1: An MRM image for testing GVF 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.2: An MRM image showing a structure with narrow concavities for testing GVF 
 
 
 



 31

(a) 
(a) 

 
 
 
 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
Figure 3.3: Vector fields for object from Figure 3.1: produced by (a) gradient and (b) GVF. 
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Figure 3.4: Vector fields for object from Figure 3.2: produced by (a) gradient and (b) GVF. 
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As shown in Figures 3.3 and 3.4, the GVF vectors originate inside the region and point 

toward the boundary. The boundary is seen where the vectors from inside and outside of the 

region meet in the opposite direction. Therefore, GVF drives the active contour to the 

boundary and fastens the active contour on the location of the boundary.  

GVF provides a large capture range for the boundary, so the active contour is not 

required to be located close to the boundary. It also improves the active convergence for the 

concavities. 
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3.3 Geometric deformable contours 
Miller et al. (1990) proposed a geometric deformable model. In their model an active 

contour is considered as a polygon, consisting of points (vertices) and edge segments 

connecting the points. As with all active contours, this polygon model deforms until it 

converges to the boundary of an object. The deformation process is performed by 

minimising a cost function that defines the displacement of the vertices. The cost function is 

a sum of constraint terms based on the shape of the polygon shape (angle and distance 

constraints), the image (image constraints) and pressure (pressure constraint). The constraint 

equation is defined as follows: 

 

C x y d a x y a D x y a d ai ( , , , ) ( , ) ( , ) ( ) ( )α τ θ α= + + +0 1 2 3Λ  (3.14) 

 

where C x y di ( , , , )α is the cost function associated with the position of the vertices; d  and 

α  denote the distance between the two neighbouring vertices and the angle between 

adjoining edge segments, respectively; τ ( , )x y  is the image constraint term; D x y( , )  is the 

the pressure constraint term; Λ( )d  is the distance constraint term; θ α( )  is the angle 

constraint term; and a0 , a1 , a2 & a3  are weightings. We briefly explain these constraint 

terms: 

 

The image constraint term, τ ( , )x y , is a thresholded image and it can be an edge map 

produced by any edge detector. 

 

The pressure constraint term, D x y( , ) , controls the direction of deformation by inflating 

or deflating the polygon model. This constraint term is a monotonically increasing or 

decreasing function of the distance between a vertex and a reference point. In the decreasing 

form the pressure constraint term is represented as: 

 

D x y M
x y x y

( , ) ln
|( , ) ( )|,

=
− 0 0

   (3.15) 

 

where M  is the diameter of the image, ( , )x y  is the position of the vertex and ( , )x y0 0  is 
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the position of a reference point that is assigned inside the object of interest. In this form the 

pressure constraint term deflates the polygon. In the increasing form the pressure constraint 

term 1
D x y( , )

 is applied to the constraint equation, and it inflates the polygon. 

 

The distance constraint term, i.e., Λ( )d , maintains the distribution of the vertices, based 

on the distance between the neighbouring vertices. To do this, the mean distance (µ ) 

between neighbouring vertices is calculated: 
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where n  is the number of neighbours to each side of the vertex k , iP  representing the 

position of vertex i . Furthermore, the minimum (i.e., dmin ) and maximum (i.e., dmax ) 

distances are defined 20% below and above µ , respectively. Λ( )d  is defined based on the 

minimum and maximum distance in such a way that, if the length of each edge segment 

( dedge ) adjoining a vertex  is  between these two distances, the distance constraint term will 

be zero. However, if the edge length is smaller than the minimum distance, the distance 

constraint will be equal to the difference between the minimum distance and the edge length, 

and for edge lengths larger than the maximum distance the distance constraint will be the 

difference of the maximum and the edge length.  

  

The angle constraint term, i.e., θ α( ) , maintains the shape of the polygon model. First, the 

initial internal angle (α ) between two adjoining edges is calculated for each vertex. The 

minimum angle (i.e., αmin ) and maximum angle (i.e., αmax ) are computed as 15% below and 

above α . During the deformation process, if an angle is between the maximum and 

minimum values, the angle constraint is set to zero; otherwise, if the angle is smaller than the 

minimum parameter the angle constraint is equal to the difference between the angle and the 

minimum value. For an angle larger than the maximum angle, the angle constraint is set to 

the difference between the angle and the maximum value. 
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The deformation process is carried out by minimizing the cost function for each vertex. 

To minimise the cost function, each vertex moves in the direction of the gradient of the cost 

function (i.e., xCi ∂∂  and yCi ∂∂ ). The minimization process is performed iteratively until 

the cost function for each vertex reaches zero or a certain small value. 

 

Geometric deformable models are computationally less expensive that traditional active 

contours (Miller, 1990). In geometric deformable models the constraint equation is evaluated 

only for the vertex position, not for the trajectory of the connecting edge segments. This 

makes the model discrete; therefore, the length of the connecting edges defines its resolution 

(Lobregt & Viergever, 1995).  
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3.4 Geometric active contours 
Geometric models of active contours were proposed by Caselles et al. (1993) and Malladi 

et al. (1995). These models are based on the theory of curve evolution and geometric flows.  

In these active contour models, the curve is propagating (deforming) by means of a velocity 

that contains two terms, one related to the shape of the curve and the other to the image 

(Caselles et al., 1995).  

Malladi et al. (1995) used the level-set method for the geometric active contours. The 

level-set method was proposed by Osher & Sethian (1988). The curve evolution is 

implemented by embedding the curve C s( )  in a surface function t)y,(x,Φ . Specifically, at 

0t = , the curve is the level set given by 0)0ty,(x, ==Φ . The curve evolves as the 

surface evolves over time. When the evolution of t)y,(x,Φ  stops, for example at 

)ty,(x, T=Φ , the evolved curve can be obtained from the level set 0)ty,(x, ==Φ T .  

By using the level-set method, the geometric active contours have the advantage over 

other active contours that they can automatically handle topological changes (e.g., the 

splitting and merging of curves during evolution). Therefore these active contours can 

simultaneously detect several objects. 

Caselles et al. (1995) showed that a particular case of the classical energy-minimising active 

contours is equivalent to finding a geodesic curve (minimal distance path between given 

points) in a Reimannian space with a metric derived from the image. This geodesic active 

contour includes a new component in the curve velocity, based on the image information, 

that improves the geometric active contour model. The new velocity component allows 

accurate tracking of boundaries even with small gaps. 
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3.5 Discrete dynamic contours 
Discrete dynamic contours were proposed by Lobregt and Viergever (1995), inspired by 

the geometrically deformable model (Miller et al., 1990). Adopting the basic structure of the 

model that vertices are connected by edge segments, discrete dynamic contours depend on 

the distance between a vertex and its neighbours, and the estimation of local curvature.  

The dynamic behaviour of the contour model is defined based on a force equation, which 

is computed for each vertex: 

 

idampdampiintintiextextitotal www ,,,, FFFF ++=   (3.17) 

 

where itotal ,F  is the total force term; iext ,F , iint ,F  and idamp ,F  are the external, internal and 

damping force terms, respectively; and wext , wint  and wdamp  are the external, internal and 

damping weightings, respectively. The internal force is computed based on the local shape of 

the contour, the external force is based on the image information, and the damping force is 

used to improve the stability of the dynamic process of the active contour. First the dynamic 

behaviour of the active contour is described and later we discuss the force terms. 

 

According to the force equation (Equation 3.17) the interaction of the force terms results 

in a cost function (i.e., total force) for each vertex. Similar to traditional parametric contours, 

in this model the deformation process is performed by minimization of the total force for 

each vertex. The dynamic behaviour of the active contour is determined by computing an  

acceleration term for each vertex using the total force: 

 

)(F1)( , t
m

t itotal
i

i =a   (3.18) 

 

where ia  is the acceleration vector of vertex i , mi  represents the mass of the vertex and is a 

scalar, and t  represent the state of the contour in an iteration. The velocity term and the 

position of each vertex are then computed based on the acceleration term: 
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 ttttt iii ∆+=∆+ )()()( avv   (3. 19) 

 and 

tttpttp iii ∆+=∆+ )()()( v   (3.20) 

 

where iv  is the velocity vector of vertex i , ∆t  represents the incremental time between two 

iterations, and pi  represent the position of the vertex. 

 

In the following sections we discuss the internal, external and damping forces in detail. 

  

3.5.1 Internal force term 
In the discrete-dynamic approach, a contour consists of vertices that are connected by 

straight-line edge segments. The internal force aims to preserve the contour’s smoothness. 

To do this the internal force should minimise the local curvature for each vertex. The 

measure of the local curvature for the vertex is the angle between the two adjoining edges at 

each vertex. The local curvature for each vertex is defined as the difference between the 

directions of the two edge segments that join at that location. Figure 3.5 shows a contour 

composed of eleven vertices. Each vertex is represented as iV , and the previous and next 

neighbouring vertices are  represented as 1−iV  and 1+iV , respectively. Figure 3.6 shows two 

edge segments and the local curvature vector. 

The local curvature is defined as 

 

1d̂d̂c −−= iii    (3.21) 

 

where ci  represents the local curvature at iV  which is located between the adjoining edge 

segments d i  and d i−1 ; id̂  and 1d̂ −i  are the unit vectors which represent the directions of the 

edge segments. The local curvature has a length which depends only on the angle between 

the adjoining edge segments at the location of the vertex and is not influenced by the lengths 

of the two adjoining edge segments.   
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Figure 3.5 A contour consisting of a set of eleven vertices (V ) that are connected by edge segments (from 
Lobregt & Viergever, 1995). 
 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.6: Calculation of local curvature. Local curvature (Ci) at the position of a vertex (

iV ) is defined as the 
difference between the directions of the adjoining edges (

id̂ &
1d̂ −i
) (from Lobregt & Viergever, 1995). 
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The radial unit vectors are calculated based on the locally tangential unit vectors for each 

vertex. The tangential unit vector for each vertex is the normalised sum of the unit vectors 

of the two adjoining edge segments at that location. The radial unit vector for that vertex will 

be the rotation of the tangential unit vector by 90 degrees. Figure 3.7 shows the tangential 

( it̂ ) and radial ( ir̂ ) unit vectors at the location of vertex iV . 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.7: Local tangential  and radial  vectors for a vertex. 

it̂ , 
ir̂  and 

iV  are the local tangential vector, the 
radial vector and the vertex, respectively (from Lobregt & Viergever, 1995). 

 

 

Equation 3.22 represents the computation of the locally tangential and radial  unit vectors 

for vertex iV : 
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The goal of applying the internal force is to preserve the smoothness of the contour by 

reducing the local curvature. The calculation of the internal force can be done by considering 

the interal force for a vertex as only the component of the local curvature vector of the 

vertex in the direction of the local radial vector, as follows:  

 

iiiint,i r̂)r̂(cF ⋅= .  (3.23) 

 

Figure 3.8 shows examples of contours for which the internal force gives a satisfactory 

result (c) and unsatisfactory results (a & b). The contours are shown on the left-hand side, 

including the internal force vectors (arrows). On the right side the internal force vectors are 

shown in tr,  coordinates. The vertical ( r ) and horizontal ( t ) axes of the coordinates 

represent the radial and tangential directions, which are perpendicular to each other. As 

shown in this coordinate system, the internal force vector of each vertex is parallel to the 

radial unit vector. In contour (a) the internal force vectors attempt to minimise the areas 

with constant curvature, and this has a shrinking effect and leads the contours to implode to 

a point. In contour (b) this internal force leads the active contour to accumulate the vertices 

in the sharp corners. However, the internal force gives a successful result for model (c), 

minimising the local curvature and straightening the contour. 

However, the internal force should reduce the local curvature without affecting areas of 

constant curvature. For that reason, the lengths of the internal force vectors should be zero 

for parts of the contour with constant curvature. 
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Figure 3.8: Examples of different contours (left). The arrows represent the internal forces. On the right, the 
internal forces are shown using the locally tangential 

it̂  and radial 
ir̂ coordinates, for each contour (from 

Lobregt & Viergever, 1995). 
 

 

In order to prevent the internal force from shrinking areas with constant curvature, one 

solution (proposed by Lobregt and Viergever) is to convolve the result of Equation 3.23 

with a filter ( ik ): 

 

iiiint,i k∗⋅= )r̂(cF .  (3.24) 

 

ik can be designed in different ways. Lobregt and Viergever used the simple symmetrical 

filter 

 

,...}0,0,0,,1,,0,0,0{..., 2
1

2
1 −−=ik  (3.25) 

 

so the internal force will be 

 

r,t-coordinates 
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iiiiiiiint,i r̂)]r̂(c)r̂(c)r̂(c[F 112
1

112
1

++−− ⋅−⋅+⋅−= . (3.26) 

 

In this case the internal force of each vertex is a combination of local curvature of the 

vertex in its radial direction, combined with half of the internal forces of the neighbouring 

vertices. The internal force of each vertex is in either the same or the opposite direction as 

the radial unit vector for the vertex. In this formulation, the local curvature and the direction 

of the radial unit vectors of the neighbouring vertices affect the internal force of the vertex. 

The new internal force can solve most of the shrinking effects that exist with the internal 

force of Equation 3.26. Figure 3.9 shows the internal forces computed with Equation 3.26 

for the same contours shown in Figure 3.8. The new internal force computation gives 

satisfactory results for contours (a), (b) and (c).  

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
Figure 3.9: Examples of different models (right) that are shown in Figure 3.8. The arrows represent the internal 
forces. The internal forces are shown in the locally tangential 

it̂  and radial 
ir̂ coordinates for each model (left) 

(from Lobregt & Viergever, 1995). 
 

r,t-coordinates
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For open contours, at the open ends, it  is defined to be equal to the direction of the first 

or the last contour segment: 11 dt =  and 1dt −= nn , while the local curvature is set zero for 

both end positions.  

 

 

3.5.2 External force term 
In discrete-dynamic contours, the external force term is similar to that in other active 

contours: 

 

iconstraintiimageiext ,,, FFF +=  (3.27) 

 

where the image force term can be a gradient of the image, and the external constraint is an 

optional user-defined external constraint such as springs or volcanoes. 

 

3.5.3 Damping force term 
A damping force term is used to improve the stability of the deformation process. This 

term is used because sometimes the contour may oscillate between two states. For each 

vertex, the damping force term is a force proportional to the vertex velocity as: 

 

idamp,i v−=F    (3.28) 

 

where iv  is the velocity of the vertex. 

 

3.5.4 Re-sampling 
A re-sampling process is applied to maintain the resolution of the active contour. To do 

this, a desired distance value between neighbouring vertices, edged , is defined by the user, 

then minimum  and maximum distances are set: 
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edge

edge

dd

dd
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2
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=

=
   (3.29) 

 

In this procedure, if the edge length between two neighbouring vertices is more than 

maxd  a new vertex is inserted in between, while two neighbouring vertices are merged if the 

distance between them is less than mind .  

 

The discrete dynamic contours are conceptually simple and computationally less 

expensive than the previous active contours, e.g., parametric contours (Kass et al., 1986) and 

geometric deformable models (Miller et al., 1990). The re-sampling process of the discrete 

dynamic contour improves the resolution that exists with active contours such as Miller’s 

geometric deformable models. It also reduces the shrinking effect caused by the internal 

forces of the traditional active contours (Lobregt & Viergever, 1995). 
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4. IMPLEMENTATION OF ACTIVE CONTOURS  
 

In this chapter we will concentrate on the implementation of two approaches proposed 

for active contours, i.e., the parametric approach (Kass et al., 1986) and the discrete dynamic 

approach (Lobregt & Viergever, 1995). We used active contours based on these approaches 

for our experiments in Chapter Six. 

 
 

4.1 Parametric contours 
In this section we review the discrete (in terms of time and space) implementation 

for parametric contours which was originally proposed by Kass et al. (1986). They applied 

numerical methods for the implementation of their active contours. A contour consists of n   

vertices ( v ) that are connected by straight lines.  

In the discrete form, the energy functional of the active contour (Equation 3.1) can be 

represented as: 
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where v v0 = n , meaning that the active contour is a closed contour and the first and last 

vertices are at the same location. The vertices are represented as column vectors, with 

respect to the coordinate components: 

 



 48

x y=























=























x
x

x

y
y

yn n

1

2

1

2

.

.
, .

.
. 

 

 

The corresponding Euler equation for energy minimization of the active contour (Equation 

3.3) is represented as (Kass et al., 1986):  
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or, with respect to the coordinate components, 
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Equation 4.3 can be written in matrix form as: 

 

Ax
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+ =
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∂
∂

∂
∂

E x y
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ext
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( , )

( , )

0

0
   (4.4)    
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where A  is a penta-diagonal banded matrix. The size of this matrix is n n×  ( n  being the 

number of vertices). For instance, for an active contour consisting of 10 vertices, matrix A  

is as follows: 
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To solve Equation 4.4, the right-hand sides of the equations can be set equal to the 

product of a step size and the negative time derivatives of the left-hand sides (Kass et al., 

1986): 
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  (4.5) 

 

where subscript t  is the iteration number and γ  is the step size. According to Equations 

4.6, the balance between the force terms is achieved when the right-hand sides of the 

equations are zero, which means that the location of the vertices in the successive iterations 

has not changed. The solution for Equations 4.5 to compute the vertex positions is done by 

matrix inversion as follows:  
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where I  is an n n×  identity matrix. The A matrix must be updated after each iteration.  

 

 

For our experiments with parametric active contours, we used an implementation by Xu 

& Prince at the Image Analysis and Communications Lab, Johns Hopkins University. The 

code was written in Matlab (The MathWorks Inc.). Further information about the 

implementation and the code is provided at http://iacl.ece.jhu.edu/projects. 

According to the implementation by Xu & Prince of the parametric active contours, to 

apply a pressure force to the active contour, as in Equation 3.8, Equation 4.6 can be 

modified to: 
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 (4.7) 

 

where n  represents the normal unit vectors to the vertices, κ  is the image force weighting, 

and κ 1  represents the pressure weighting, which can be a positive or negative value to inflate 

or deflate the active contour, respectively.  

 

In the implementation by Xu & Prince, a re-sampling process is applied that maintains 

the resolution of the active contour. After each iteration the distance between two vertices is 

computed. If it is larger than a defined maximum value (e.g., 2
11  pixel) a new vertex is 

inserted in between, and if the distance is less than a defined minimum value (e.g., 2
1  pixel) 

the vertices are merged.  
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4.5 Discrete dynamic contours  
 

We developed a semi-automatic computer programme, Oxiana, that implements the 

discrete dynamic contours of Lobregt & Viergever (1995). This programme was initially 

written by Hamelin, Labonté & Pelletier (1999) in our lab. Oxiana is written in C. It uses  

GIMP, the GNU Image Manipulation Programme, for graphics and general data structure 

implementations. The GIMP programme includes the GLADE toolkit, which is used to 

build the graphical user interface. The GLADE toolkit uses GTK and GDK, multi-platform 

toolkits for creating graphical user interfaces, and the Glib library, containing libraries for the 

graphics, and for general data structure implementations. Further information about GIMP 

and GLADE is available at http://www.gimp.org. Information about GTK, GDK and the 

Glib library is available at http://developer.gnome.org/doc/API/. 

 

The user can either draw an initial contour using the mouse, or load a previously saved 

contour. To draw an initial contour using the mouse, the user clicks in the region of interest 

and Oxiana connects the successive vertices by lines. It connects the first and last points in 

order to draw a closed contour. Figure 4.1 shows the sequence of drawing a closed contour. 

The user interface makes it possible for the user to edit the location of each vertex through 

the Vertex List. Also through the Edit Vertex window, the user can set the selected vertex to 

be either normal or anchored. The user can add a spring point that is applied to the selected 

vertex. The volcano has not been yet added to the interface, although the code for volcanoes 

is available in the programme. This was because we prefered to use pressure forces instead 

of volcanos, since applying pressure forces requires less user interaction and is easier than 

using volcanoes. Figure 4.2 shows the Vertex List and edit menu for the vertices of a current 

active contour.  



 52

(a) (b) 

(c) (d) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.1: The sequence of drawing a closed contour using the mouse. 
 

 

Figure 4.2: Vertex List, and edit menu for a selected vertex that can be manually modified by the user. 
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Oxiana includes both the gradient and GVF to calculate the external forces. The user can 

change the external force from gradient to GVF and vice versa, at any time. All the force 

weighting factors can be changed through the user interface by the user. The user can save 

the current active contour at any time and later the contour can be loaded for further 

applications. 

Oxiana had to be debugged first and then to be modified in order to handle other 

features, which are described in this section. 
 
4.5.1 Debugging 

In the programme as implemented by Hamelin, Labonté & Pelletier (1999), there were 

two bugs that needed to be fixed beforehand. One was related to an “if condition” for 

finding the external force value of the corresponding vertices. The other one was related to 

the re-sampling process of merging close vertices, which was using a wrong pointer.  

 
4.5.2 New features 

Oxiana was improved to include the application of open contours and pressure forces, 

and some other features that are discussed in detail below.  

 

4.5.2.1 Open contours 
Oxiana was originally designed to automatically connect the first vertex to the last 

initialised one; therefore, it could only implement closed contours. We improved the 

programme in order to allow open contours. To do this, the code was modified in such a 

way that the first and the last vertices remain unconnected and are considered as anchors, if 

the contour is open.  

Figure 4.3 shows an example of the sequence of drawing an open contour. 
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(a) (b)

(c) (d)

 
 
 
 
 
 

 
 
 

 

 

 

 

 

 

 

 

 

 
Figure 4.3: The sequence of drawing an open contour. 
 
 

 

In a step-by-step process, the user can draw an active contour in several steps, iterating 

the active contour after each vertex is added. This provides connected open contours that 

can be considered as a simple contour in the end. This has the advantage of easily applying 

as many anchor points as desired, instead of implementing the entire active contour all at 

once and then anchoring the intermediate vertices using the edit vertex interface.  
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4.5.2.2 Pressure 
Positive and negative pressure forces were the next feature added to Oxiana. As defined 

in section 3.2.3, the pressure forces are implemented as vectors perpendicular to the vertices. 

By combining Equations 3.9 & 3.17, we reach Equation 4.10, as follows: 

 

ipressurepressureidampdampiintintiextextitotal wwww ,,,,, FFFFF +++=  (4.8) 

 

where pressurew  and ipressure ,F  are a pressure weighting factor and a unit force vector, 

respectively. pressurew  is defined by the user, and can be a negative or positive value to 

deflate or inflate the active contour model, respectively. ipressure ,F  is the radial unit vector to 

the vertex  i . 

 

4.5.2.3 Application to multiple slices 
Oxiana has the ability to save the current active contour, and to then reload it for use on 

the same image or other images. Therefore, we can apply and iterate an active contour on a 

slice from a dataset and when the segmentation of a region of interest is completed, by 

opening the next slice and loading this active contour, the active contour will appear at the 

same coordinate positions as in the previous slice, and it can then be iterated on the new 

slice. Hence, no active contour initialisation is required for the second slice. This results in 

time saving and simplicity of operation. Figure 4.4 illustrates this feature of Oxiana on three 

successive slices of an MRM dataset. An initial active contour is implemented and iterated to 

segment a desired structure in a slice (e.g., slice 109), and the converged active contour is 

loaded on the successive slice (e.g., 110), for the same structure. Thereafter, by iterating the 

active contour on this slice, it fits itself to the boundary of the structure in this slice and 

segments the desired structure. In this example we continued this process on the next slice 

(e.g., 111). 
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Figure 4.4: Example of the multi-loading property of active contours in Oxiana: (a) the initial active contour 
(white line) on slice 109 of MRM dataset, (b) the final contour after 150 iterations when the active contour 
converges to the boundary, (c) the active contour loaded on the same structure in slice 110, (d) the final 
contour on slice 110 after 30 iterations, (e) the active contour loaded on the same structure in slice 111, and (f) 
the final contour on slice 111 after 20 iterations. 

(a)      Slice 109 (b)       Slice 109 

(c)      Slice 110 (d)       Slice 110 

(e)      Slice 111 (f)       Slice 111 



 

4.5.2.4 Exporting 
Oxiana can be a complementary tool for the computer programmes Fie (Fabrication 

d'imagerie extraordinaire) and Tr3 (for triangulating 3-D surfaces between serial-section 

contours), both written in our laboratory. Using Fie the user manually segments the 

structures of interest. Fie produces a text file containing locations of vertices, slice names, 

names of contours and various other information which is used by the Tr3 programme to 

create 3-D models for visualisation (using VRML) and finite-element simulation. Further 

information about Fie and Tr3 are available at 

http://audilab.bmed.mcgill.ca/~funnell/AudiLab/sw/. 

Oxiana can output active-contour information that can be easily fed to Fie. The output of 

Oxiana is a text file including vertex coordinates, contour name, slice name, and z-

coordinate. The last three items are defined by the user. Using any text editor, the user can 

copy and paste the information directly into the file used by Fie and Tr3. 

 
 

4.5.2.5 Avoiding  collapse 
Discrete dynamic contours have a tendency to shrink due to the internal force 

characteristics, although it was claimed by Lobregt & Viergever (1995) that the shrinking 

problem is solved in discrete dynamic contours. In cases where the external forces cannot 

balance the force equation, either due to a high negative pressure force or because the initial 

contour was located far from the boundary, the active contour would keep shrinking and 

would eventually collapse. This results in losing the active contour information, since the 

programme re-draws the active contour after the user-defined number of iterations.  A check 

was added to verify if the content of the active contour is NULL, i.e., the contour has 

collapsed, after the user-defined number of iterations. In such a case the programme 

terminates the iteration process and avoids re-drawing the collapsed active contour. 

Moreover, a warning message will advise the user to save the current active contour before 

losing it. 

 

(a)
57

http://funsan.biomed.mcgill.ca/~funnell/AudiLab/sw/
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4.5.3 Springs vs. anchors 
Springs and anchors are constraints that are used to assist the convergence of active 

contours to desired boundary regions. A spring acts as a local constraint force that attracts a 

selected vertex to a desired location on the image. An anchor, by contrast, immobilises a 

vertex when applied.  

To fix a vertex on a weak boundary, we can use either anchors or springs. Using Oxiana, 

a spring is easily applied to the desired vertex. For doing this, the desired vertex is selected 

through the pop-up vertex list and the user can change the x & y coordinates of the spring 

by typing them (e.g., any actual boundary pixel) and the spring weighting factor. In the next 

iterations the spring affects the selected vertex and draws it to the spring point. To anchor a 

vertex, the desired vertex can be easily set to anchor mode through the vertex list, and also 

its location can be changed manually, if necessary, for instance to position it exactly on the 

boundary pixels. In such cases, the difference between a spring and an anchor is that the 

anchor must be located on the boundary and the user should recognise the boundary; while 

using a spring a user need only locate the spring point somewhere close to the boundary. A 

spring helps to move the vertex close enough to the boundary that the active contour can 

converge. 

A spring can be set as positive or negative in order to either attract or repel the selected 

vertex. The difference between a spring and a pressure force is that the spring is applied 

locally, on only one vertex, while the pressure force is applied globally to the active contour 

and affects all vertices.  
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5. MATERIALS 
 

 

This chapter describes different image datasets that we used for our active-contour 

experiments. The datasets include histology and Magnetic Resonance Microscopy (MRM) 

images. There are three kinds of image datasets available for the study of middle-ear images, 

including histology, MRM and x-ray Computer Tomography (CT). Since x-ray CT cannot 

show the soft tissues as well as MRM images, we chose not to use it. The two datasets used 

here are typical of the histology and MRM datasets available. 

 
5.1 Histology 

 

Histology is the study of tissue, which is an organized collection of cells and their 

supporting structures. In contrast with CT and MRM techniques, histology provides colour 

images with higher resolution. The preparation of histological images such as the middle ear 

includes several processes (Ham & Cormack, 1979). 

First, the tissue is fixed with formaldehyde in order to prevent post-mortem 

decomposition, preserve structure and intensify subsequent staining. Next is decalcification 

of bones or calcified cartilages using decalcifying fluid. This process dissolves the inorganic 

salts that would cause difficulty in slicing the structures afterwards. The decalcified structure 

is embedded in, for example, paraffin or celloidin, to prevent distortion during slicing. Then, 

the structure is sliced and stained. Staining the slices is done by using hematoxylin and eosin 

or other stains. For instance, under the influence of hematoxylin, the tissue absorbing this 

stain will take on a blue to purple colour. For the tissues absorbing eosin, a pink to red 

colour is achieved, depending on the properties of the tissue. The last process is mounting 

the stained slices on a glass slide, for protection. 

There are three issues related to the use of histological data for 3-D modelling purposes. 

Firstly, due to the thinness of sectioning, serial sectioning results in a large quantity of slices;  

since the staining and mounting process is time consuming, typically every fifth or tenth slice 

is mounted and the slices in between are discarded. Secondly, the mounting process results 

in misalignment between the slices; therefore, the histological data require an alignment 
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process before 3-D reconstruction. Thirdly, serious distortion may occur even after the 

embedding process.  

The histology dataset that we used for our experiments was prepared by C. C. Northrop 

and S. R. Levine from The Temporal Bone Foundation, Inc., Boston. The data are from a 

human ear, sectioned at 20µm in the horizontal plane; every fifth section was mounted on 

microscope slides. The slides were scanned using a Polaroid slide scanner with a resolution 

of 2700×2700 pixel/inch. The size of each image is 1976×1684 pixels. Figure 5.1 shows an 

example of a middle-ear histological slice. Although our original histological dataset consists 

of colour images, in our experiments, which are discussed in the following chapter, we used 

the histological dataset after converting them to grey-scale images. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5.1: Slice number 256 from histological dataset of human middle ear. 

Malleus

Incus

1 mm 
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5.2 MRM 
 

Magnetic Resonance Microscopy (MRM) is an extension of Magnetic Resonance Imaging 

(MRI) to the microscopic domain, with higher spatial resolution than MRI. They are both 

based on Nuclear Magnetic Resonance (NMR). The principles of NMR, MRI, and MRM are 

provided in several publications (e.g., Curry et al., 1990; Bronzino, 1995; Brown et al., 1999). 

MRM is a new form of microscopy that overcomes many limitations of conventional 

microscopy, such as the need for slicing and staining, or ionizing radiation, which are all 

invasive and destructive procedures. Both MRM and MRI are powerful, non-invasive and 

high-quality imaging modalities for three-dimensional cross-sectional scanning with the 

ability to demonstrate anatomical structures and pathological changes. Soft-tissue 

differentiation is generally better than with x-ray imaging.  

 

The MRM dataset we used for our experiments was made available by M. Henson & 

O.W. Henson, Jr., from the University of North Carolina at Chapel Hill. Middle-ear 

specimens were scanned at Duke University in the Center for In Vivo Microscopy. The 

dataset number 13641 is from a human ear. The dataset consists of 180 transverse sections, 

each 187×256 pixels, and the voxel size is approximately 120µm. Figure 5.2 shows a sample 

slice.  
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Figure 5.2: Slice number 110 from MRM dataset of human middle ear. 
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6. RESULTS 
 

 

 
Our research on the segmentation of middle-ear images using active contours includes 

the following phases:  

•  Investigation of the calculation of GVF; 

•  Experiments with force weighting factors; 

•  Comparisons between parametric and discrete dynamic active contours for 

segmentation of histological structures; 

•  Comparisons between parametric and discrete dynamic active contours for 

segmentation of MRM structures; 

•  Experiments with discrete dynamic open contours for histological and MRM 

structures.  

We discuss the phases in the following sections. 

We used two different programmes for the two active-contour approaches. One 

programme, which implements parametric active contours, GVF and pressure, was written 

in Matlab (The MathWorks Inc.) by Xu & Prince (1997) from the Image Analysis and 

Communications Laboratory, Johns Hopkins University. Oxiana, developed in our lab, was 

used to implement the discrete dynamic contours. 

 
 
 

6.1 Calculation of GVF 
We did experiments with GVF in order to find the appropriate number of iterations for 

convergence. We applied different numbers of iterations to compute the GVF, and then we 

compared the external force maps for each number of iterations. Figures 6.3 and 6.4 show 

the external force maps for 5, 40 and 80 iterations for a histological image (Figures 6.1) and 

for an MRM image (Figure 6.2), respectively.  

We found that 80 iterations is appropriate, although for many images 40 iterations seems 

good enough (as in Figure 6.4). It is important to note that this is not a quantitative analysis. 

The criterion for choosing 80 iterations is based on the observation that we actually see no 
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visual difference between 80 iterations and the next examined number of iterations above it, 

i.e., 100 iterations. GVF computation is a time consuming process; therefore, by choosing 80 

iterations, less time is required for GVF computation than with larger numbers of iterations. 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
Figure 6.1: Malleus bone in slice 196 of the histological dataset. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 6.2: A cavity in slice 110 of the MRM dataset. 
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Figure 6.3: The external force maps produced by GVF of Figure 6.1: for (top) 5, (middle) 40 and (bottom) 80 
iterations. 



 66

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6.4: The external force maps produced by GVF of Figure 6.2: for (top) 5, (middle) 40 and (bottom) 80 
iterations. 
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6.2 Force weightings for active contours 
 

One of the most important issues for active-contour applications is choosing the 

appropriate weighting factors, i.e., tension, rigidity and the external force weightings for the 

parametric approach, and the internal, external and damping weighting factors for the 

discrete dynamic contours. Experiments were performed to evaluate the performance of the 

two types of active contours with different combinations of force weighting factors, as 

discussed in the following sections.  

According to the force-balance equations for parametric (Section 3.2) and discrete 

dynamic (Section 3.5) contours, the active contour evolves and then comes to rest when it 

has minimized its energy. The change of the location and number of the vertices reaches a 

very small number or zero. In consequence, the positions of the vertices remain practically 

unchanged. The combination of the internal and external force weightings has a crucial 

effect on the force-balance equation. Any inappropriate combination of the weighting 

factors affects the active-contour performance and produces undesired results. 

 
6.2.1 Parametric contours 

Figure 6.5 shows some examples of inappropriately chosen values for tension, rigidity and 

the external force weighting factors. In these examples, the values of the weightings are 

exaggerated in order to clearly show the effects. As discussed in Section 3.2.1, increasing the 

tension weight will cause the active contour to behave more like a rubber band trying to 

contract. Figure 6.5(a) shows this effect for α = 0.5. Figure 6.5(b) shows the result of 

increasing rigidity to a high value (β =20), which causes the active contour to act as a stiff 

wire which cannot converge to the concavities. Increasing the external force too much 

causes the active contour to follow the external force influence and the internal force 

(tension and rigidity) can no longer preserve the contour’s smoothness. Figure 6.5(c) shows 

this effect for κ =5. 

It is important to note that the best combination of the weighting factors may vary 

depending on the characteristics of the region of interest (e.g., the contrast and shape), the 

number of points of the initial contour, and the distance of the points from the boundary. 

We found that the combination suggested by Xu & Prince (1997), i.e., κ =0.6, α = 0.05 and 

β = 0.01, gave good results for most of the selected regions of interest of our datasets.  
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(a) 

(b) 

(c) 

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6.5: The effect of increasing internal force parameters: (a) tension weight (α =0.5), (b) rigidity weight 
(β =20) and (c) external-force weight (κ =5). 
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The acceptable range for each weight is as follows. 

Increasing β  will increase the rigidity of the model and would affect the shape even if 

close to start with. We found that the rigidity weighting factor can be increased from 0 to 

0.03 with almost the same results. Decreasing the tension weight causes the active contour to 

follow the influence of the external force and lose its smoothness. The acceptable range that 

we found for tension was from 0.02 to 0.08. For values over α = 0.08, the active contour 

must be initialised close to the boundary; otherwise, the tension force tries to contract the 

model and prevents the contour points from easily converging to the boundary. Figure 6.6 

shows the example of an initial contour located close enough to the boundary (a) that 

converges for both  α =0.02 (b) & α =0.08 (c), and an initial contour located farther from 

the boundary (d) than the one in (a), which converges for α =0.02 (e) but fails for α =0.08 

(f) and continues shrinking due to the internal force characteristics of the parametric 

contours. 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 
Figure 6.6: Examples of the relationship between the initial position of the active contour & tension: an initial 
contour located close enough to the boundary (a), this contour converges for α=0.02 (b), and for α=0.08 (c). 
Another initial contour located farther from the boundary (d) than the one in (a), and it converges for α=0.02 
(e), but fails for α=0.08 (f). 

(a) (b) (c) 

(d) (e) (f) 
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We found that with parametric active contours the ratio of force weightings is more 

important than the values themselves. For instance, if the force weighting is increased four 

times, which indeed exceeds the previously recommended ranges for the force weightings 

(i.e., κ  =2.4, α = 0.2 & β =0.06), the active contour behaves as it does for κ =0.6, α = 0.05 

& β =0.01, but it requires that the initial contour be closer to the boundary. Although 

keeping the rigidity weighting factor equal to zero when applying our suggested combination 

does not noticeably affect the active-contour behaviour, we found that when using the 

combinations that are several times bigger than our suggested combination, if the rigidity is 

zero the behaviour of the active contour changes: the effect of tension becomes more 

evident, and the initial contour must be located closer to the boundary. In fact tension and 

rigidity have modifying effects on each other and it becomes noticeable when the force 

weightings are proportionally increased. The other combinations that we used for our 

experiments on histology and MRM datasets are discussed in Sections 6.3 and 6.4. 

 
 

6.2.2 Discrete dynamic contours 
Figure 6.7 shows simple examples of inappropriate combinations of the weightings for a 

discrete dynamic contour. In any of these examples the forces cannot balance each other, the 

total force never reaches zero or a small number, and consequently the positions of the 

vertices continue to change. In this situation the active contour energy is never minimized 

and it keeps evolving. In such a case the active contour approaches the boundary but it is 

not smooth, as seen in Figure 6.7. The weighting factors are slightly exaggerated in order to 

clearly illustrate the details for the limited size of image. For instance, decreasing the 

damping and the internal force weightings to a smaller value than required, or increasing the 

external force more than required, e.g., wext =6, will cause the active contour to follow the 

influence of the external force without having the proper effects of the internal and the 

damping forces to keep the model smooth. Figure 6.7(a) shows this example. In another 

case, if the internal force weighting is higher than both the damping and external forces 

weightings in such a way as to unbalance Equation 4.16, e.g., wint =2.5, the position of each 

vertex is dominated by the internal force of that vertex, which is either in the same direction 

as its radial unit vectors or in the opposite direction. This situation can be seen in Figure 
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6.7(b). Finally, in the case where the damping weighting factor exceeds its proper limit, e.g., 

wdamp =3.5, it will result in a non-smooth contour model. This is the result of a situation 

where the total force from Equation 4.6 is never minimized for each vertex and 

consequently, too much velocity is fed back (in the form of positive feedback) to the force 

balance equation through the damping force. Figure 6.7(c) shows this example. Also, if any 

two out of the three weighting factors are kept in their acceptable ranges, and only the 

remaining one is set to zero, the absence of this force will affect the force balance equation 

and the behaviour of the active contour. For instance, if the external and damping force 

weightings are kept and the internal force weighting is set to zero, the active contour follows 

the external force influence and the contour is not smooth. Figure 6.8(a) shows this effect. 

In another case, if we set the damping force to zero, this force weighting combination does 

not result in a smooth active contour. This is because the damping force, which to some 

extent provides the smoothness of the active contour, is absent. However, in this case the 

active contour converges to the boundary. Figure 6.8(b) shows this effect. In the case where 

the external force weighting is zero, the effect of the internal force is dominant and leads the 

active contour to shrink, so the active contour cannot converge to the boundary. Figure 

6.8(c) shows this effect. 
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(a) 

(b) 

    (c) 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6.7: Effect of increasing force term values: (a) the external force weight, (b) the internal force weight and 
(c) the damping force. 
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(c) 

(a) 

(b) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6.8: Examples of setting force weightings to zero. (a) the internal force weight is set to zero, (b) the 
damping force weight is set to zero, and (c) the external force weight is set to zero. 
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For the datasets that we used for our experiments, the proper weighting-factor ranges 

that we found were wint =0.5±0.3, wext =0.6±0.3 & wdamp =1±0.5. The combination can be 

varied depending on the characteristics of the regions of interest (e.g., contrast). This will be 

discussed later in Sections 6.3 and 6.4 on experiments with discrete dynamic contours.  

We found that only with discrete dynamic contours, and not with parametric contours, 

the ranges of the force weightings are more important that the ratios. For instance, by 

increasing the force weightings four times, which indeed exceeds the ranges for the force 

weightings (i.e., wint =2, wext =2.4 & wdamp =4), the active contour does not behave as it does 

when wint =0.5, wext =0.6 & wdamp =1, and it affects the smoothness of the active contour. 

This is due to the fact that the total force is proportional to the force weighting factors; 

therefore, by increasing all the weighting factors two times the total force will be doubled. 

Figure 6.9 shows the result of the best combination of force weightings(a) and then shows 

the effect of increasing the weighting factor twice (b) and four times (c). By increasing the 

weighting factors the smoothness of the contour is degraded. 
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(b) 

(c) 

(a) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6.9: Examples of increasing the force weighting factors: (a) the best combination, (b) two times the best 
combination and (c) four times the best combination. 
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Incus

 

6.3 Parametric & discrete dynamic contours with the 
histological dataset 

 

This section includes the experiments with closed contours on the histological dataset, 

comparing parametric and discrete-dynamic contours. The studies contain experiments with 

the gradient alone, with GVF, and with the gradient plus pressure force. To precisely 

compare the performance of the two active-contour approaches, identical initial contours 

were applied for both approaches. 

The cross-sectional anatomical structures chosen for the experiments were mainly two 

tiny bones of the middle ear: malleus and incus. Figure 6.10 shows the bones as quasi-oval 

dark regions. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6.10: Histological slice 241 showing the malleus & incus bones as quasi-oval dark regions. 
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6.3.1 Timings 
Both our programmes, Oxiana (discrete-dynamic approach) and the Matlab programme 

(parametric approach) are run under Linux on a system with a 1-GHz Intel processor and 

1GB of RAM. Due to the faster performance of programmes written in C than of those 

implemented in Matlab, the speed of the computation is much higher with Oxiana. We 

compared the execution times for computing GVF and gradient, and for active-contour 

iterations, using the two programmes. The speed of GVF computation is different between 

Oxiana and the Matlab programme. For instance, for each histological slice (770 x 500 

pixels), the computation of GVF takes approximately 20 seconds with Oxiana and 

approximately 3 minutes 30 seconds with the Matlab programme. Calculation of the gradient 

with Oxiana and the Matlab programme takes 2 and 4 seconds, respectively. It is important 

to note that Matlab has a built-in function for computing the gradient and therefore the 

speed difference between Oxiana and the Matlab programme is not as big as for the 

computation of GVF.  

Again, the speed of iterations was different with Oxiana than with the Matlab 

programme, and it is much higher with Oxiana. The information about the time required for 

active contour iterations is provided in Table 6.1. This is a comparison between the 

programmes that implement the active-contour approaches and cannot be considered as a 

comparison between the approaches themselves. 

We concluded that the computation for each iteration of an active contour with Oxiana 

takes approximately 200µsec, while with the Matlab programme each iteration takes 

approximately 1.5 sec. For this experiment, we used an initial contour composed of  11 

vertices as shown in Figure 6.11, for both active contours. The time difference between the 

iterations in Oxiana and the Matlab programme is firstly due to the lower speed of 

computation of the programmes implemented in Matlab, and secondly is related to the 

algorithm implementation that computes the inverse of the n-by-n (n being the number of 

vertices)) pentadiagonal matrix (described in Section 4.1). Although the matlab INV function 

(for calculating 1I)(A −+γ  from Equation 4.6) is a built-in function, in general it is a time-

consuming calculation that affects the speed of the Matlab programme, for each iteration. 
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Figure 6.11: Example of an active contour. It was used for the calculation of the speed of Oxiana and the 
Matlab programme. The initial contour consists of 11 vertices on a selected structure. This contour was used 
for both active contours, i.e., parametric and discrete dynamic contours, to compute their iteration times, as 
provided in Table 6.1. 

 

 

 

 

 

 

 
Oxiana (iterations/sec) Matlab programme (iterations/sec) 

10,000/2 5/7 
20,000/4 10/15 
50,000/10 20/30 
100,000/20 40/60 

 
Table 6.1: The comparison between the number of iterations for the same initial contour in Oxiana and in the 
Matlab programme. We needed to apply very large numbers of iterations for Oxiana, to be able to calculate the 
interval between each iteration. 
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6.3.2 Gradient 
In this experiment we applied the gradient as the external force for active contours. 

Table 6.2 provides the details of the experiments on some of the structures of interest.  

 

Discrete approach Parametric approach 
Slice 

number 

 
Structure 

No. of 
points for 
the initial 
contour 

No. of iterations No. of iterations 

181* Malleus 11 30 40 

187 Malleus 10 35 50 

196 Malleus 11 85 100 

246* Incus 11 50 65 

266 Incus 12 60 80 

306 Incus 13 75 90 

306 Malleus 12 60 80 
 
Table 6.2: Applying gradient alone for discrete dynamic and parametric active contours. The structures marked 
with asterisks are shown in Figure 6.12. 

 

 

The most important thing for the initial contour was that they must be close enough to 

the boundary in order to converge. The number of points itself is not important, except in 

so far as they allow the creation of an initial contour close enough to the boundary. Figure 

6.12 shows the results of boundary delineation using parametric and discrete dynamic 

contours for the selected structures marked with asterisks in the table. The two active-

contour approaches had similar boundary-delineation results using the gradient technique. 

The gradient technique gave good results for all the structures of interest.  
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Figure 6.12: Segmentation using the two contour approaches. The activ
from slice 181: (a) the initial contour, (b) using discrete-dynamic appr
and for the incus from slice 246: (c) the initial contour, (d) using d
parametric approach. 

 

 

 

Since the capture range of the gradient is limited, how
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(a) (b) 

(c) (d) 

(e) (f) 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
Figure 6.13: Segmentation with different initial contours. The active contours were applied to the malleus from 
slice 196: (a) the initial contour (white line) located close to the boundary, (b) the final contour for the initial 
contour shown in (a), (c) & (e) the initial contours located far from the boundary, (d) the contour from (c) after 
600 iterations that is tending to collapse and fails to converge to the boundary and (f) the contour from (e) after 
600 iterations that is not completely converged to the boundary and cannot converge any more. 
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Using the same initial contour, the parametric-active contour requires a larger number of 

iterations than does the discrete dynamic contour, as indicated in Table 6.2.  

Using anchors or springs can overcome the limited capture range of the gradient for 

regions where the initial active-contour points are located far from the boundary. In the 

following sections we evaluate other suggestions, i.e., GVF and pressure, to improve the 

capture range of the gradient.  
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6.3.3 GVF 
In this section we evaluate GVF as the external force since the use of GVF attempts to 

overcome the capture-range limitation of the gradient method; so the initial contour can be 

located farther from the boundaries. Figure 6.14(a) shows an example of an initial contour 

located too far from the boundary, so that the active contour using the gradient fails to 

converge to the boundary (b), while GVF helps the active contour to converge to the 

boundary (c).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 6.14: Comparison of active contour convergence for gradient and GVF. (a) An initial contour located 
too far from the boundary. (b) The result of using the gradient is that the active contour cannot converge to 
the boundary. (c) The result of using GVF that leads the active contour to converge to the boundary. 
 
 

 

 

 

 

For some structures for which that the gradient gave good results, we used GVF to 

accelerate the convergence of the active contours to the boundary. For instance, we used the 

same initial contour comprised of four points for both parametric and discrete-dynamic 

(a) (b) (c)
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approaches. The structure used for this example was the malleus from slice 196, shown in 

Figure 6.13. The results, provided in Table 6.3, confirm that, in order to converge to the 

structure’s boundary, active contours require smaller numbers of iterations when using GVF 

than when using the gradient method. 

 

 

 

Approach type No. of iterations for 
Gradient 

No. of iterations for 
GVF (µµµµ = 0.2) 

Parametric  3000 20 

Discrete dynamic 2150 30 
 
Table 6.3: A comparison between using the gradient alone and using GVF. 

 
 

 

 

To further examine the capture range of GVF and the required number of iterations for 

parametric and discrete dynamic contours, simple triangular initial contours were used for all 

the selected structures. The triangle models were intentionally initialised far from the 

boundaries to examine the capture range of GVF, and inside the structures in order to 

protect the active contours from the effects of external forces related to the neighbouring 

regions. The same triangle was applied for both parametric and discrete-dynamic contour 

approaches. For most of the selected structures, however, these initial contours failed. This 

failure was related to the small high-contrast regions existing inside the structures of interest. 

Figure 6.15(a) shows examples of such small regions inside structures of interest, and the 

corresponding external forces are shown in Figure 6.15(b).  
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Figure 6.15: Example of a failure of convergence using GVF. Histological slice 246 shows the malleus and 
incus cross-sectional structures. Both structures contain small regions with high contrast (as marked) which 
produce false boundaries that attract the active contours. (a) An example of the active contour (white line) that 
overwhelms the boundary since the boundary of the incus is wrongly identified by GVF with µ=0.2 and (b) the 
external force map of (a) produced by GVF. The corresponding location of the wrongly identified boundary of 
the incus structure is shown by black arrows in Figures (a) & (b). 

 

Malleus
Incus

Small regions inside 
the regions interest 

(a) 

(b) 
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GVF produces external forces for these small regions. For example, if any vertex is 

located close to one of these small regions, the active contour converges to that region 

boundary and not to the desired boundary. Therefore, for structures containing small 

regions with high contrast, an appropriate initial model should contain as few points as 

possible, but it must be closer to the desired boundary than to the small-region boundaries. 

Figure 6.16 shows an example of an initial contour (white line) which succeeds for the 

malleus containing small regions. 

 
 
 
 
 

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
Figure 6.16: Example of initial contour containing high-contrast small regions. The active contour succeeded 
for the malleus in slice 246. 

 
 

 

 

For both active-contour approaches, we first used µ =0.2, as suggested by Xu & Prince 

(1997). According to Equation 3.10, as µ  is reduced, the effect of the Laplacian decreases 

and the gradient becomes dominant. We found that when µ  is very small, e.g., 0.02, the 

effect of GVF is not significantly different from that of the gradient alone. Therefore, we did 

not apply  µ < 0.02 since it will have the same limitations as the gradient method. For our 

experiments with GVF, µ  was chosen to be as large as possible without causing wrong 

identification of the boundary.  
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Table 6.4 provides the information about the numbers of points of the initial models, the 

appropriate µ  and the numbers of iterations required for convergence of parametric and 

discrete dynamic contours.  

 

Discrete approach Parametric approach 
Slice 

number 

 
Structure 

No. of 
points for 
the initial 
contour 

Appropriate 
µµµµ weight 

No. of 
iterations 

Appropriate 
µµµµ weight 

No. of 
iterations 

181 Malleus ** failed failed 

187 Malleus ** failed failed 

196* Malleus 4 0.2 35 0.2 10 

Malleus 6 0.08 30 0.05 20 
246* 

Incus 5 0.08 15 0.05 20 

Malleus 5 0.05 25 0.05 15 
266  

Incus 7 0.15 75 0.08 80 

Malleus ** failed failed 
306 

Incus ** failed failed 

 
Table 6.4: Applying GVF for discrete dynamic and parametric approaches. The structures marked with an 
asterisk are shown in Figures 6.17 & 6.18. ** represents all initial contours, even those initialised close enough 
to the boundary. 

 
 

We found that GVF causes the boundaries of structures with low boundary contrast, e.g., 

malleus in slice 181, to be wrongly identified and the final contour to rest in the wrong place. 

Figure 6.17(a) shows an example of a wrongly identified boundary, where the active contour 

has passed the actual boundary. Figure 6.17(b) shows the external force map produced by 

GVF. The corresponding location of the wrongly identified boundary is shown by black 

arrows in Figures 6.17(a) & (b). 
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Figure 6.17: Example of the active contour passing the boundary when using GVF. Histological slice 181 
shows the malleus cross-sectional structure. (a) The result of active contour (white line) that passes the right 
boundary due to the wrongly identified boundary by GVF with µ = 0.2. (b) The external force map produced 
by GVF for µ = 0.2; the actual location of the right boundary is shown by a black line. The arrows point to the 
location of the actual boundary. 
 

(a) 

(b) 
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We found that the segmentation results of both approaches were very similar. Figures 

6.18 & 6.19 show examples for the initial contours and the final contours using discrete 

dynamic and parametric active contours. Compared with discrete dynamic contours, 

parametric active contours required mostly smaller numbers of iterations to converge to the 

boundaries of the regions of interest when using the same initial contour. We found that 

parametric and discrete-dynamic contours sometimes require different µ  for satisfactory 

results.  
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(a)

(b)
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Figure 6.18: Example of parametric and discrete dynamic contours using GVF. The active contours were 
applied on the malleus in histological slice 196: (a) the initial contour (white line) composed of four points, (b) 
final contour using discrete dynamic contour and (c) final contour using parametric active contour. 
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Figure 6.19: Example of parametric and discrete dynamic contours using GVF. The active contours were 
applied on the incus from histological slice 246: (a) the initial contour (white line) composed of six points, (b) 
final contour using discrete dynamic contour and (c) final contour using parametric active contour. 

(a) 

(b) 

(c) 
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For structures with very low boundary contrast, there were no appropriate µ , as marked 

‘failed’ in Table 6.4. Even by applying µ =0.02 (the smallest applicable factor), the active 

contours of both approaches pass the boundaries. GVF was not a successful method for 

such structures. Figure 6.17(a) shows an example for a structure with low boundary contrast. 

We also found that GVF may lead the active contours to wrongly identify the boundary 

regions between nearby structures even with high boundary contrast. GVF extends the 

influence of the stronger boundary over the weaker one. To prove that this issue was not 

related only to the low contrast of the weaker boundary, both structures were cut from the 

original image and the GVF with µ =0.2 was applied to them. The segmentation results 

were then successful for both separate structures. Figure 6.15 shows an example of such 

structures. The problem with wrongly identified boundaries is reduced when µ  decreases. 

Figure 6.20 shows the external force map of Figure 6.15(a) produced by GVF with µ =0.2 

and µ =0.05. 

 

In an attempt to avoid the wrong boundary identification caused by GVF, we applied 

different combinations of the force weighting factors. We found that decreasing the external 

force weighting factor and increasing rigidity and tension weights for parametric contours, 

and internal and damping force weight for discrete dynamic contours, did not remove this 

issue. This is because the GVF leads the active contour to wrongly identify the boundary. 

Therefore, changing the external force weighting factor cannot correct the position of the 

boundary, and internal force has no control over it.  

  
In conclusion, µ  used for GVF computation depends on the boundary contrast of the 

region of interest. Since the contrast is not consistent within a slice, nor through slices, the 

appropriate µ  must be chosen by trial and error. GVF fails for regions with low contrast. In 

addition, GVF may intensify the effects of the neighbouring regions within the vicinity of  a 

few pixels; it is not a good method for the regions of interest in our histological dataset. 

GVF is good for simple images, but for complex images including regions with low contrast 

and/or weak edges, GVF may give undesired results. 
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Figure 6.20: External force maps produced by GVF using different µ values (of the malleus from slice 196): (a) 
with µ = 0.2 , and (b) with µ = 0.05. The black arrows point the left boundary of the incus structure that is 
wrongly identified with µ = 0.2. 

(b) 

(a) 
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6.3.4 Gradient plus pressure 
As an alternative approach to improving the capture range of the gradient method, we 

applied a pressure force, discussed in Section 3.2.3. The pressure force is independent of the 

image information, in contrast with the gradient and GVF that are computed based on the 

image information. In this section we evaluate the use of gradient plus pressure force as the 

external force for both parametric and discrete dynamic contours. 

To compare the number of iterations required for active-contour convergence with and 

without pressure, an experiment similar to that of Table 6.3 (Section 6.3.3) was done for 

both active-contour approaches using the same initial contour. The structure used for this 

experiment was the malleus from slice 196. Table 6.5 shows the results of the experiment. 

The appropriate pressure weighting factor used for both approaches was 0.08. In this 

example, even the gradient alone is good for the segmentation but using the pressure makes 

the convergence faster. 

 

Approach No. of iterations for 
Gradient 

No. of iterations for 
Gradient with 

pressure 
Parametric 3000 130 

Discrete dynamic 2150 195 
 
Table 6.5: A comparison between using the gradient alone and the gradient plus pressure. 

 

For our experiments with the gradient plus pressure, we used the same simple initial 

contours that were previously used for GVF experiments (Table 6.4) on the structures of 

interest. Table 6.6 shows the results for the appropriate pressure weighting factors and the 

numbers of iterations required for the convergence of the active contours. The criterion for 

choosing an appropriate pressure weighting factor was that it should be as large as possible 

without leading the active contour to overwhelm the boundary. As the initial contours are 

located inside the structures of interest, we applied a pressure force that inflates the active 

contours, i.e., a positive pressure force. 

Both parametric and discrete dynamic-contour approaches using gradient plus pressure 

give very similar boundary delineation of the structures of interest. Figure 6.21 shows the 

examples of the results of segmentation with discrete dynamic and parametric contours 

using gradient plus pressure. 
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(a) (b) (c) 

(d) (e) (f) 

(g) (h) (i) 

(j) (k) (l) 

 

 

 

 

 

 

 

  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 6.21: Examples of using gradient plus pressure. The middle column shows the discrete dynamic 
contours and the right column shows the parametric active contours: (a) the initial contour on the malleus from 
histological slice 181, (b) the final discrete dynamic contour and (c) the final discrete dynamic contour; (d) the 
initial contour on the malleus from histological slice 196, (e) the final discrete dynamic contour and (f) the final 
discrete dynamic contour; (g) the initial contour on the incus from histological slice 246, (h) the final discrete 
dynamic contour and (i) the final discrete dynamic; (j) the initial contour on the incus from histological slice 
306, (k) the final discrete dynamic contour and (l) the final discrete dynamic contour. 
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Discrete dynamic 
approach 

Parametric active 
approach Slice 

number 

 
Structure No. of 

points for 
the initial 
contour 

Optimal 
pressure 
weight 

No. of 
iterations 

Optimal 
pressure 
weight 

No. of 
iterations 

181* Malleus 3 0.05 350 0.05 360 

187 Malleus 3 0.05 650 0.01 2015 

196* Malleus 4 0.11 160 0.08 195 

Malleus 6 0.06 165 0.06 160 
246* 

Incus 5 0.06 325 0.03 360 

Malleus 5 0.06 295 0.03 365 
266  

Incus 7 0.04 410 0.03 390 

Malleus 5 0.03 225 0.02 290 
306 

Incus 8 0.02 975 0.01 1670 
 
Table 6.6: Applying the gradient with pressure for discrete dynamic and parametric approaches. The structures 
marked with an asterisk are shown in Figure 6.21. 

 

The comparison between Table 6.6 and Table 6.2 shows that for a particular pressure 

weighting factor, many more iterations were required when using the gradient with pressure 

than when using GVF. However, GVF failed for several structures while the gradient with 

pressure force was successful in all selected structures.  

 

We found that the appropriate pressure weighting factor depends on the boundary 

contrast. This is similar to the situation with µ  of the GVF, which also depends on the 

boundary contrast. For structures with low boundary contrast when using the gradient alone, 

by increasing the external force weighting factor we can intensify the boundary regions with 

low contrast. However, by increasing the external force weighting factor we increase the 

effect of false boundaries that are produced by the small high-contrast regions inside the 

selected structure. The same problem exists when using GVF. This is because the external 

force produced by the gradient or GVF depends on image information, so an increase of the 

external force weighting is applied to the whole image and can at the same time intensify the 

undesired edges that can attract the active contours. In contrast, since the pressure force is 
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independent of image information, by using pressure we may solve the problem that exists 

with false interior boundaries. This worked for all the cases we tried. 

 

Oxiana permits the user to apply a negative or positive pressure, or to turn off the 

pressure, at any time. For example, if the user applies a positive pressure force and the active 

contour passes the boundary, the user can apply a negative pressure to drive the active 

contour back towards to the boundary, and then turn off the pressure and iterate the active 

contour again in order to converge to the boundary using gradient alone. 
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6.3.5 Summary 
In the experiments on our histological dataset, we evaluated gradient, GVF and gradient-

plus-pressure as the external force for the parametric and discrete dynamic approaches. The 

two active-contour approaches give similar boundary delineation of the structures of 

interest.  

The gradient technique gives good results for all the selected structures, provided that the 

initial contour is located close to the boundary, since the capture range of the gradient is 

limited. Both GVF and the gradient plus pressure improve the limited capture range of the 

gradient. As a result a smaller number of iterations for active contour convergence is 

required when using GVF or the gradient plus pressure. When using the same initial 

contours, active contours require smaller numbers of iterations with GVF than with the 

gradient plus pressure.  

For regions with low boundary contrast GVF may wrongly identify the boundary and 

lead the active contours to overwhelm the boundary. Also, GVF may lead the active 

contours to wrongly identify the boundary regions between nearby structures even with high 

boundary contrast. The gradient plus pressure succeeded for most regions which GVF 

technique failed for. Since the pressure force is independent of image information, by using 

pressure we may remove the issue that exists with false boundaries. 

Both µ , used for GVF computation, and the pressure force weighting, used for the 

gradient plus pressure, depend on the boundary contrast of the region of interest, and since 

the boundary contrast is not consistent within a slice, nor through slices, the appropriate µ  

and pressure weighting factors must be chosen by trial and error. 
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6.4 Using active contours for segmentation on the MRM 
dataset 

 

This section contains experiments with closed active contours on the MRM dataset. 

These experiments include comparative studies of parametric and discrete dynamic contours. 

The studies also include experiments with the gradient alone, with GVF and with the 

gradient plus pressure forces. To precisely compare the performance of the two 

active-contour approaches, the same initial contours were applied for both contour 

approaches. 

The cross-sectional anatomical structures chosen for the experiments included bones (e.g., 

malleus and incus), soft tissues (e.g., tensor tympani muscle), and some cavities. It is 

important to note that MRM images have lower contrast  and resolution than do histological 

images. We used structures with a variety of shapes and boundary contrasts since we were 

interested in evaluating the performance of the active contours on these structures. Figures 

6.22 & 6.23 show the examples of the structures of interest.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6.22: MRM slice 110 showing the malleus, incus and some cavities (as labelled). 
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Figure 6.23: The malleus bone and tensor tympani muscle are illustrated in MRM slices: (a) 83 & (b) 90.  
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6.4.1 Gradient  
In this section we use the gradient alone as the external force to evaluate the 

performance of parametric and discrete dynamic contours on our MRM dataset. Similar to 

our experiments on the histology dataset, the gradient alone gives good results provided that 

the initial contour is located close to the boundary.  

For almost all the structures containing concavities (mostly narrow concavities), e.g., 

cavity 3 in slice 110 (Figure 6.22), active contours could not converge to the concavities 

when using gradient alone. This is because the gradient produced force vectors that are 

normal to the edge surface and therefore for narrow concavities the external force cannot 

drive the active contour towards the concavity boundaries, as described in Section 3.3. This 

is shown in Figure 6.24. 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
Figure 6.24: Final contour using the gradient on Cavity 3 from slice 110. The active contour (white line) cannot 
converge to the narrow concavities using the gradient alone.  
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Table 6.7 shows the results of the experiments using the gradient for the two active-

contour approaches on structures with low boundary contrast and/or containing concavities.  

 

 

Slice 
number Structure No. of points for the 

initial contour 
Discrete 
approach 

Parametric 
approach 

Malleus* 5 195 215 
83 Tensor 

tympani* 6 150 170 

Malleus* 3 160 250 
90 Tensor 

tympani* 3 70 85 

Incus* 4 80 110 
Malleus* 5 105 160 
Cavity 1 4 85 95 
Cavity 2 4 40 45 
Cavity 3* 13 35 40 

110 

Cavity 4 
Any initial contour even if 

located close to the 
boundary 

Failed Failed 

 
Table 6.7: Applying gradient for discrete dynamic and parametric contours. For the structures marked with an 
asterisk, the external force weighting was increased to 4.0 to enhance the external force.  

 

 

Parametric and discrete dynamic contours gave similar segmentation results. Figure 6.25 

shows results of boundary delineation for some structures of interest using parametric and 

discrete dynamic contours. 
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(a) (b) (c) 

 (d)  (e)  (f) 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 
Figure 6.25: Boundary delineation with discrete dynamic and parametric active contours. The active contours 
were applied on the malleus from MRM slice 83: (a) initial contour (black line), (b) final contour with discrete 
dynamic contour and (c) final contour with parametric active contour. Cavity 3 from slice 110: (d) initial 
contour (white line),  (e) final contour with discrete dynamic contour, and (f) final contour with parametric 
active contour.  

 

 

For most of the selected structures, using the weighting combinations provided in 

Sections 6.1 & 6.2 resulted in active contours failing to converge to the parts of the 

boundary with low contrast and narrow concavities. By increasing the external force 

weighting factor to 4.0 we were able to the convergence failures The structures on which we 

used this combination are marked with an asterisk. In Table 6.7 cavities 1 and 2 did not 

require the external force weighting to be increased to 4.0, since their boundary contrast was 

high enough. 
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For the structure with the lowest boundary contrast, cavity 4, labelled as failed, 

increasing the external force weighting factor could not help the active contour converge to 

the boundaries.  

Parametric and discrete dynamic contours had very similar delineation results for most 

structures. We found that parametric active contours required the starting contours to be 

located closer to the boundary than did discrete dynamic contours. Figure 6.26 shows an 

example of an initial contour that converges to the boundary using a discrete dynamic 

contour but fails when using a parametric active contour. In addition, parametric active 

contours required a larger number of iterations than discrete dynamic contours, for an 

identical initial contour model. 

 
 
 
 
 
 
 
 
 
 
 
 

 

 

 
Figure 6.26: Examples of initial contours. The initial contour (white lines) is composed of four points on cavity 
1 from slice 110, showing the sensitivity of parametric approach to the location of initial contours, compared 
with the discrete dynamic approach: (top) the initial converges to the boundary using both parametric and 
discrete dynamic approach, and (bottom) the initial contour is located farther from the boundary (compared 
with initial contour shown in (top)). This contour fails when using the parametric active contour and converges 
to the boundary when using the discrete dynamic approach.  
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(a) (b) 

6.4.2 GVF 
In this section we evaluated GVF as the external force since the use of GVF attempts to 

overcome the capture-range and concavity limitations of the gradient method. We used the 

same initial contours in order to compare the two active contour approaches. The initial 

contours were simple triangles. These models were intentionally implemented far from the 

boundary to test the capture range of the GVF method. Figure 6.27 shows examples of 

triangle initial contours. 

 

 

 

 

 

 

 

 

 
 
Figure 6.27: Examples of triangle initial contours. The initial contours (black triangles) used for parametric and 
discrete dynamic contours. 

 

 
We started applying GVF with µ =0.2, as proposed by Xu & Prince. We found that this 

value leads the active contours to overwhelm the boundaries. Similar to our experiments 

with the histological dataset, using a µ  less than 0.02 gives behaviour very similar to that of 

gradient alone, and therefore there is no advantage to using GVF with µ <0.02. For our 

experiments with GVF, µ  was chosen to be as large as possible without its causing 

boundary misidentification. Table 6.8 shows the appropriate µ  and number of iterations for 

some of the structures of interest with low boundary contrast and/or concavities. 
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Discrete approach Parametric approach 

Slice 
number 

Structure 
No. of points 
for the initial 

contour 
Appropriate 

µµµµ weight 

No. of 
iterations 

Appropriate 

µµµµ weight 

No. of 
iterations

Malleus 3 0.02 50 Failed 
83 Tensor 

tympani ** Failed Failed 

Malleus 3 0.02 25 0.02 20 
90 Tensor 

tympani ** Failed Failed 

Incus* ** Failed Failed 

Malleus* ** Failed Failed 

Cavity 1 ** Failed Failed 

Cavity 2 ** Failed Failed 

Cavity 3 ** Failed Failed 

110 

Cavity 4 ** Failed Failed 
 
Table 6.8: Applying GVF for discrete dynamic and parametric contours. For the structures marked with an 
asterisk we increased the external force weighting to 4.0. ** represents for any initial contour even located close 
enough to the boundary. 

 
 

No appropriate µ  was found to give a good result for the structures labelled ‘failed’: all 

the values for µ  led the active contours to overwhelm the boundaries. This was because 

GVF wrongly identified the boundaries and therefore active contours converged to the 

misidentified boundary. Figure 6.28 shows an example of a misidentified boundary produced 

by GVF and the results of the active contour.  

 

In general, we found that only for a few selected structures, with high boundary contrast, 

could GVF give good results, and in these cases the appropriate values of µ  are very small, 

e.g., 0.02. 
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Figure 6.28: Segmentation of the malleus. The active contour, using GVF, was on slice 110 from the MRM 
dataset: (a) active contour overwhelms the  left boundary and (b) the external force map of (a) produced by 
GVF (µ=0.02). The corresponding location of the misidentified boundary of the malleus is shown by black 
arrows in (a) & (b). 

(a)

(b)
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As with the histological dataset (Section 6.3.3), we found that GVF may lead the active 

contours to wrongly identify the boundary regions between nearby structures even with high 

boundary contrast, e.g., cavities 2 & 3. This is an effect of a stronger boundary on the weaker 

one, because GVF extends the influence of the stronger boundary over the weaker one. To 

prove that this issue was not related to the contrast of the boundary, both structures were 

cut from the original image, then the GVF with µ =0.2 was applied to them and the 

segmentation results were successful for both separate structures. The wrongly identified 

boundary issue was generaly reduced when µ  was decreased. Figure 6.29(a) shows an 

example of such structures, and the external force map of Figure 6.29(a) produced by GVF 

with µ =0.2 and µ =0.02 are shown in (b) & (c), respectively. However, in this example the 

active contour using µ =0.02 still fails to converge to the actual boundary.  

 

 

In conclusion, µ  used for GVF computation depends on the boundary contrast of the 

region of interest. The GVF technique failed for most MRM structures, since they generally 

have low boundary contrast. In addition, GVF may intensify the effects of the neighbouring 

regions within the vicinity of a few pixels. GVF is not a good method for the regions of 

interest in our MRM dataset. 
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Figure 6.29: The external force maps produced by GVF using different µ . (a) MRM slice 110 shows cavities 2 
& 3, (b) the external map produced by GVF with µ=0.2, (c) the external force map produced by GVF with 
µ=0.02. The neighbouring boundaries between the cavities are misidentified. This is because of the effect of a 
stronger boundary on the weaker one. The corresponding location of the misidentified boundary of the cavities 
is shown by black arrows on (a) & (b). 

(a) 

(b) 

(c) 
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6.4.3 Gradient plus pressure 
Similar to our experiments with histological images (Section 6.4.2), we applied a pressure 

force to improve the capture range of the gradient method and furthermore to compare it 

with GVF (Section 6.4.1) for the MRM dataset. To compare the number of iterations for 

active-contour convergence between parametric and discrete dynamic contours, the same 

initial contours used for GVF (Table 6.4) were applied with the pressure force. The initial 

contours were intentionally implemented far from the boundary to test the behaviour of 

active contours with an additive pressure force. Table 6.9 shows the results for the 

appropriate pressure weighting factors and the numbers of iterations required for the 

convergence of the active contours. The criterion for an appropriate pressure weighting 

factor was that the pressure weighting factor should be as large as possible but not lead the 

active contour to overwhelm the boundary. As the initial contours are located inside the 

structures of interest, we applied a pressure force that inflates the active contours, i.e., a 

positive pressure force. 

 

Discrete approach Parametric approach 
Slice 

number Structure 
No. of 

points for 
the initial 
contour 

Optimal 
Pressure 
weight 

No. of 
iterations 

Optimal 
pressure 
weight 

No. of 
iterations 

Malleus 3 0.06 125 0.02 300 
83 Tensor 

tympani ** Failed Failed 

Malleus 3 0.04 160 0.03 100 
90 Tensor 

tympani 3 0.07 180 0.04 130 

Incus* 3 0.06 285 0.05 205 
Malleus 3 0.03 270 0.03 235 
Cavity 1 3 0.05 230 0.04 150 
Cavity 2 3 0.08 125 0.07 80 
Cavity 3 ** Failed Failed 

110 

Cavity 4 ** Failed Failed 
 
Table 6.9: Applying the gradient with pressure for discrete dynamic and parametric contours. For the structure 
marked with an asterisk we increased the external force weighting to 4.0. ** indicates that no initial contour 
succeeded even when located close to the boundary. 
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Both parametric and discrete dynamic approaches using the gradient plus pressure give 

similar boundary delineations of the structures of interest. Figure 6.30 shows examples of 

boundary delineation using both parametric and discrete dynamic contours.  
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Figure 6.30: Examples of using gradient plus pressure on malleus. The malleus structures were from slices 83 (a 
& b) and 90 (c & d). The triangular initial contours are shown in Figure 6.21. (a) Result of using discrete 
dynamic contour, (b) result of using parametric active contour, (c) result of using discrete dynamic contour and 
(d) result of using parametric active contour. 
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The comparison between Tables 6.8 & 6.9, i.e., results of segmentation using GVF and 

using gradient with pressure, shows that the pressure force worked successfully for most 

structures that GVF failed for. With the pressure force, the parametric active contours 

require a smaller pressure weighting factor and a smaller number of iterations than discrete 

dynamic contours do.  

For only one structure with weak boundaries, labelled with an asterisk, i.e., incus in slice 

110, for which the pressure force leads the active contours to overwhelm the boundaries, 

increasing the external-force weighting intensifies the weak boundaries and prevents the 

active contours from overwhelming the boundaries. For this structure the appropriate 

external-force weighting was found to be 2.0. 

Pressure force works successfully for the structures with concavities such as the malleus 

in slices 83 and 90. However, for almost all narrow concavities such as cavity 3, active 

contours of both approaches cannot converge to the concavity for an appropriate pressure 

weighting factor, and increasing the external force weighting factor is not effective in these 

cases. 

Similar to our experiments with gradient plus pressure on the histological dataset 

(Section 6.3.4) we found that the appropriate pressure weighting factor depends on the 

boundary contrast. And similar to experiments with GVF (Section 6.4.3) the gradient plus 

pressure failed for the structures with low boundary contrast. 
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6.4.4 Summary 
In the experiments on our MRM dataset, we evaluated the gradient, GVF and the 

gradient plus pressure as the external force for parametric and discrete dynamic approaches. 

The two active contour approaches give similar boundary delineation of the structures of 

interest. However, when using GVF and the gradient plus pressure, parametric active 

contours required smaller numbers of iterations for active contour convergence compared 

with the discrete dynamic approach. 

The gradient technique gives good results for all the structures of interest, provided that 

the initial contour is located close to the boundary since the capture range of the gradient is 

limited. We found that parametric contours using the gradient require the initial contour to 

be closer to the boundary than do discrete dynamic contours, and for the same initial 

contour the parametric contours required a larger number of iterations for active contour 

convergence than do discrete dynamic contours. 

GVF failed for most of the structures of interest, since MRM structures have low 

boundary contrast, and it was successful only for structures with high boundary contrast. 

However, GVF may lead the active contour to wrongly identify the boundary regions 

between nearby structures even with high boundary contrast. We found that for structures 

with low boundary contrast and/or containing concavities, the discrete dynamic approach is 

more successful than the parametric approach. However, for structures with high boundary 

contrast parametric active contours require smaller numbers of iterations than do discrete 

dynamic contours. 

The gradient plus pressure worked successfully for most structures, especially those 

containing concavities, that GVF failed for. When using the gradient plus pressure, the 

parametric active contours require a smaller number of iterations than discrete dynamic 

contours do. 

GVF and the gradient plus pressure both accelerate the convergence of the active 

contours to the boundary, but in equal conditions (a structure with the same initial contour), 

active contours using GVF converge more quickly to the boundary than do those using the 

gradient plus pressure. It is important to note that the gradient, GVF and the gradient plus 

pressure all failed for some structures with low boundary contrast and/or narrow 

concavities. 

Similar to our experiments with histological dataset (Sections 6.3.2 & 6.3.3), the factor µ  
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(used for GVF computation) and the pressure force weighting (used for the gradient plus 

pressure) depend on the boundary contrast of the structure. The appropriate µ  and 

pressure weighting factors must be chosen by trial and error because the boundary contrast 

is not consistent within a slice, nor through the slices. 
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6.5 Using open contours for segmentation 
 

A closed contour completely encloses the region which corresponds to a structure. The 

use of open contours (in addition to the usual closed contours) facilitates the controlled 

handling of complex structures with shared surfaces or of thin structures.  

 

The structures we used for segmentation with open contours were the shared surfaces 

and thin structures. The contrast of these regions is neither consistent within a slice, nor 

through the slices. This problem is especially present in the MRM dataset where the 

resolution and contrast of the images is not high enough to have a clear discrete view of the 

different structures.  

 

In the experiments with closed contours we found that the gradient alone and the 

gradient with pressure force give better segmentation results than GVF. Therefore for open 

contours, we applied only the gradient alone and the gradient with pressure. 
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Incus 

Lateral bundle
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6.5.1 Histological dataset 
Open contours were used to segment the shared boundaries between bones (e.g., incus 

and malleus) and the soft tissues (e.g., ligaments). Figures 6.31 and 6.32 show examples of 

such structures.  

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
Figure 6.31: Histological image data showing the malleus and incus. The structures are in Slice 251. The soft 
tissue between the two bones is shown. 
 
 

 

 

  

 

 

 

 

 

 
Figure 6.32: Histological image data showing the incus. The structure is in Slice 346. The lateral and medial 
bundles of the posterior incudal ligament are shown. 
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Shared surfaces
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We first applied the gradient alone as the external force for the open contours. A 

pressure was then used to improve the capture-range of the gradient technique for the cases 

where the initial contour was not located close enough to the boundary. For other initial 

contours that were located close enough to the boundary, pressure force was used to 

accelerate the convergence of the active contour. Figure 6.33(a) shows an example of an 

initial contour located not close enough to the boundary and the results when using the 

gradient alone (b) and when using the gradient plus pressure (c).  

 

 

 

 

 

 

 

 

 

  

 
Figure 6.33: Open contours using gradient and gradient plus pressure. (a) Initial contour located far from the 
boundary, (b) the final contour using the gradient which does not converge to the boundary and (c) the final 
contour using the gradient plus pressure that converges to the boundary. 

 

 

 

The criterion  for choosing the appropriate pressure weighting factor is as described in 

Section 6.3.4. Table 6.10 provides the details of using the gradient alone and the gradient 

plus pressure for the segmentation of the shared surfaces of interest in several slices.  

 

(a) (b) (c) 



 119

 

Gradient alone Gradient plus pressure 
Slice 

number Structure 

No. of 
points 
for the 
initial 

contour

No. of 
iterations 

appropriate 
pressure 

weighting 

No. of 
iterations 

The surface between 
malleus and the soft 
tissue between malleus 
& incus 

3 595 0.1 80 
251* 

The surface between 
incus and the soft tissue 
between malleus & incus

4 755 0.08 75 

The surface between 
malleus and the soft 
tissue between malleus 
& incus 

3 1945 0.03 270 
286* 

The surface between 
incus and the soft tissue 
between malleus & incus

3 545 0.02 235 

341 
Lateral bundle of the 
posterior incudal 
ligament 

3 1055 0.03 170 

Lateral bundle of the 
posterior incudal 
ligament 

3 395 0.02 270 
346* Medial bundle of the 

posterior incudal 
ligament 

3 105 0.03 90 

Lateral bundle of the 
posterior incudal 
ligament 

3 220 0.03 80 
351 Medial bundle of the 

posterior incudal 
ligament 

3 90 0.03 30 

 
Table 6.10: Applying gradient alone and gradient plus pressure for discrete dynamic open contours on the 
histological dataset. The contour initialisation and final discrete dynamic and parametric contours are shown in 
Figure 6.27 for structures marked with an asterisk. 

 

 

Simple initial contours including three vertices were initialised for the segmentation of 

the shared surfaces of interest. These initial contours were not successful for all the surfaces. 

This was because some false edges (produced by the small regions existing in the structures 

of interest as described in Section 6.3.3) were located in the vicinity of the initial contours 

and would prevent the active contour from converging to the desired boundary. In one case 

we had to use an initial contour with one extra point to locate the open contour closer to the 

desired boundary and farther from the false edge. 
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  (a)   (b)   (c) 

  (d)   (e)   (f) 

  (g)   (h)   (i) 

Figure 6.34 shows examples of the initial contours and the results of segmentation with 

open contours using the gradient alone and the gradient plus pressure. Open contours using 

the gradient alone and the gradient plus pressure give almost the same results. The gradient 

alone required more numbers of iterations for the open contour convergence to the 

boundary. Using the gradient plus pressure removes the capture-range limitation that exists 

with the gradient alone; and therefore, the initial contour can be located farther from the 

boundary than the initial contour used for the gradient alone. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
Figure 6.34: Examples of open contours using gradient alone and gradient plus pressure: (a) the initial contour 
on the slice 251 (the incus shared surface), (b) the final contour using the gradient, and (c) the final contour 
using the gradient plus pressure; (d) the initial contour on the slice 286 (the malleus shared surface), (e) the final 
contour using the gradient and (f) the final contour using the gradient plus pressure; (g) the initial contour on 
the slice 346 (the incus shared surface with later posterior ligament), (h) the final contour using the gradient, 
and (i) the final contour using the gradient plus pressure. 
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   (a) 

   (b) 

We were also interested in using open contours for segmentation of thin structures such 

as the eardrum. Figure 6.35 shows examples of the eardrum structure.  

 

 

 

 

 

 

 

 

 
 

 

 

 

 
Figure 6.35: Examples of the eardrum. The structures were selected from (a) histological slice 506, and (b) 
histological slice 551. 
 
 

 

 

 

Segmentation of very thin structures such as the eardrum requires that the open contour 

detect the middle pixel of the structure rather than the exterior pixels. The gradient alone 

was not successful to detect the central pixel along the length of the eardrum structure. As a 

result the open contour using the gradient often jumps to the other side of the edge. Figure 

6.36(a) & (c) shows examples of this problem. The magnified versions of the regions of 

interest, showing that the active contour leaped to the other side of the structure, are shown 

in (b) and (d) for (a) and (c), respectively. To solve this issue an algorithm that detects the 

centre of the structure should be used to compute the external force for open contours. 
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Figure 6.36: Final open contours (red line) for eardrum structure segmentation: on histological slice 496 (a) and 
slice 551 (c). (b) & (d) are the magnified versions of the regions of interest from (a) and (c), respectively. The 
black arrows point to part of the structures where the open contour jumps from one side of the edge to the 
other side because of the edge detector. 

(a) 

(c) 

(b) 

(d) 
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In our experiments with open contours on the histological dataset, we found that both 

the gradient alone and the gradient plus pressure give good results for segmentation of the 

shared surfaces between structures. However, since pressure force removes the capture-

range limitation which exists with the gradient method, we found that when using the 

gradient plus pressure the initial contour can be located farther from the boundary than 

when using the gradient alone. Also, a smaller number of iterations is required for open 

contours to converge to the boundary when using the gradient plus pressure. For 

segmentation of thin structures such as the eardrum, we found that the gradient is not an 

appropriate technique since it only detects the exterior pixels along the structure’s length 

while the central pixels are required for this purpose. In some cases, since the contrast of the 

eardrum varies along its length, the gradient cannot even properly detect the exterior pixels 

and it may cause the open contour to jump from one side to the other side of the structure. 

 

 

6.5.2 MRM dataset 
Open contours were used to segment the shared boundaries between bones and soft 

tissues. The shared surfaces we used for our experiments were the bony tympanic ring,  

shown in Figure 6.37(a), the shared surface of the incus and malleus with the soft tissue 

located between them, shown in Figure 6.37(b), and the shared surface between incus and 

the posterior incudal ligament, shown in Figure 6.37(c). MRM slices have generally lower 

contrast than the histological dataset. Therefore, the shared surfaces of interest are better 

seen in the histological data than in the MRM dataset. 

Simple initial contours including three vertices were initialised for our experiments. The 

simple initial contours were successful for all our desired shared surfaces.  

We first applied the gradient alone as the external force for the open contours. A 

pressure was later used to accelerate the active contour convergence to the boundary. The 

criterion for choosing the appropriate pressure weighting factor is described in Section 6.43. 
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Figure 6.37: Examples of shared surfaces: (a) bony tympanic ring from slice 85, (b) between bones (incus & 
malleus) and the soft tissue located between them from slice 115, and (c) between the incus and the posterior 
incudal ligament from slice 129. 

Annular 
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Bony tympanic 
ring 
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shared 
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Table 6.11 provides the details of applying the gradient alone and the gradient plus 

pressure for the segmentation of the shared surfaces of interest in several slices. 

 

 

Gradient alone Gradient plus pressure 
Slice 

number Structure 

No. of 
points 
for the 
initial 

contour

No. of 
iterations 

appropriate 
pressure 

weighting 

No. of 
iterations 

85* The bony tympanic ring 3 100 0.02 55 
88 The bony tympanic ring 3 85 0.02 45 

The surface between 
incus & the soft tissue 
between malleus & incus

3 55 0.03 25 
115* The surface between 

malleus & the soft tissue 
between malleus & incus

3 90 0.03 45 

The surface between 
incus & the soft tissue 
between malleus & incus

3 100 0.03 45 
118* The surface between 

malleus & the soft tissue 
between malleus & incus

3 110 0.03 50 

128 
Shared surface between 
incus & the posterior 
incudal ligament 

3 15 0.02 8 

129* 
Shared surface between 
incus & the posterior 
incudal ligament 

3 15 0.02 8 

 
Table 6.11: Applying the gradient alone and the gradient with pressure for discrete dynamic open contours in 
the MRM dataset. The contour initialisation and final discrete dynamic and parametric contours are shown in 
Figure 6.27 for structures marked with an asterisk. 

 

 

In our experiments, open contours using the gradient alone and the gradient plus 

pressure give almost the same results. Similar to our experiment with open contours on the 

histological dataset in Section 6.5.1, the gradient alone required a larger number of iterations 

for convergence to the boundary. Using the gradient plus pressure removes the capture-

range limitation that exists with the gradient alone; therefore, the initial contour can be 

located farther from the boundary than the initial contour used for the gradient alone. Figure 

6.38 shows examples of the initial contours and the results of segmentation with open 

contours using the gradient alone and the gradient plus pressure. 
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(a) (b) (c) 

(d) (e) (f) 

(g) (h) (i) 

(j) (k) (l) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 6.38: Examples of open contours using gradient and gradient plus pressure: (a) the initial contour on the  
slice 85 (bony tympanic ring), (b) the final contour using the gradient, and (c) the final contour using the 
gradient plus pressure; (d) the initial contour on the slice 115 (the incus shared surface with the soft tissue 
located between incus and malleus), (e) the final contour using the gradient and (f) the final contour using the 
gradient plus pressure; (g) the initial contour on the slice 118 (the malleus shared surface with the soft tissue 
located between incus and malleus), (h) the final contour using the gradient, and (i) the final contour using the 
gradient plus pressure; (j) the initial contour on the slice 129 (the incus shared surface with the posterior incudal 
ligament), (k) the final contour using the gradient, and (l) the final contour using the gradient plus pressure. 
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6.5.3 Summary 
In our experiments with open contours on the histological and MRM datasets, we found 

that both the gradient alone and the gradient plus pressure give good results for 

segmentation of the shared surfaces between structures. However, since pressure force 

improves the capture-range limitation which exists with the gradient method, we found that 

when using the gradient plus pressure the initial contour can be located farther from the 

boundary than when using the gradient alone. Also, a smaller number of iterations is 

required for open contours to converge to the boundary when using the gradient plus 

pressure.  

For segmentation of the thin structures in the histological dataset such as the eardrum, 

we found that the gradient is not an appropriate technique since it only detects the exterior 

pixels along the structure’s length while the central pixels are required for this purpose. In 

some cases, since the contrast of the eardrum varies along its length, the gradient cannot 

even properly lead the active contour to converge to the exterior of the structure and it may 

cause the open contour to jump from one side to the other side of the structure. 
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7. CONCLUSION AND FUTURE WORK 
 

 

7.1 Conclusion  
Image processing and computer vision have been well-established academic fields since 

the 1970s. Although many academics have published applications in this field, few have been 

highly reliable and successful in practice. Academic emphasis tends to be directed more 

toward pure innovation and mathematical elegance – demonstrated with a few carefully 

chosen test results – than toward reliability (Guéziec, 2002).  

Modern imaging devices provide exceptional views of internal anatomy, but the use of 

computers to quantify and analyse (e.g., segment) the embedded structures with accuracy and 

efficiency is limited (McInerney et al., 1996. Segmentation or boundary identification of 

structures from medical images is difficult due to the complexity and variability of anatomic 

shapes of interest.  Furthermore, the shortcomings typical of sampled data, such as sampling 

artefacts, spatial aliasing and noise, may cause the boundaries of structures to be indistinct 

and disconnected (McInerney et al., 1996). Traditional low-level image-processing techniques 

(e.g., gradient operators), which consider only local information, can make incorrect 

assumptions and generate undesired object boundaries (e.g., a contour with gaps). 

As an alternative, instead of exploiting only image information as low-level techniques 

do, active contours also use the information about the boundaries as part of an optimisation 

procedure. Variant approaches and techniques have been proposed to improve the original 

form of active contours, i.e., traditional parametric contours as originally proposed by Kass et 

al., (1986). For instance, techniques such as pressure force (Cohen, 1991) and GVF (Xu & 

Prince, 1997) were proposed to improve the capture range of the external forces, which are 

generally based on the gradient of the image. Different active-contour formulations, such as 

discrete dynamic contours (Lobregt & Viergever, 1995), were also introduced to simplify the 

complexity of computation and improve the performance of the parametric contours. 

We used histological and MRM datasets of the middle-ear for our experiments. In our 

experiments with active contours on middle-ear images, we used and compared traditional 

parametric and discrete dynamic contours with gradient, with gradient vector flow and with 

the gradient plus pressure force as the external force. For implementation of traditional 

active contours, we used a Matlab programme written by Xu & Prince at Image Analysis and 
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Communications Lab, Johns Hopkins University. We used Oxiana, a semi-automatic 

computer programme, developed in our lab, that implements the discrete dynamic contours. 

Closed contours were used for the experiments with both active contour approaches. We 

also demonstrated open contours for segmentation of shared boundaries between structures. 

When using gradient as the external force, for the same initial contours, a larger number 

of iterations is required for the parametric contours to converge to the boundary than with 

the discrete dynamic contours. However, when using GVF and the gradient plus pressure, 

parametric active contours require a smaller number of iterations for active contour 

convergence, compared with the discrete dynamic approach, at least for the weighting 

factors used here. 

The gradient alone gives good results for all the selected structures, but the initial contour 

must be located relatively close to the boundary in order to converge. This affirms the 

capture-range limitation of the gradient technique. The GVF and the gradient plus pressure 

increase the capture range of the gradient and also accelerate the convergence of the 

contours to the boundaries. As a result, a smaller number of iterations and less time are 

required for active contour convergence when using GVF or gradient plus pressure, 

compared with gradient alone.  

When using the same initial contours, active contours require smaller numbers of 

iterations with GVF than with gradient plus pressure. Although GVF is good for simple 

images, we found that in real images (e.g., our datasets) it is not a reliable technique. One 

reason is that GVF may wrongly identify the boundary and lead the active contours to pass 

the boundary, when applied to regions with low boundary contrast. The other reason is that 

GVF may wrongly identify the boundary regions between nearby structures even with high 

boundary contrast.  

The MRM datasets have a lower resolution and contrast than the histological datasets. 

With the histological dataset, the gradient plus pressure succeeds for most regions where the 

GVF technique fails, especially for structures containing concavities. With the MRM dataset, 

however, for some structures with low boundary contrast and/or narrow concavities, active 

contours fail even when using the gradient plus pressure. 

Both µ  (used for GVF computation) and the pressure weighting (used for the gradient 

plus pressure) depend on the boundary contrast of the region of interest. Since the boundary 

contrast is consistent neither within a slice nor across slices, the appropriate µ  and pressure 
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weighting factors must be chosen by trial and error. 

In our experiments with open contours in the histological and the MRM datasets, we 

found that gradient and gradient plus pressure give good results for segmentation of the 

shared surfaces between structures. However, since pressure force improves the capture 

range of the gradient, we found that when using the gradient plus pressure the initial contour 

can be located farther from the boundary than when using the gradient alone. When using 

the gradient plus pressure, a smaller number of iterations is required for open contours to 

converge to the boundary.  

For segmentation of thin structures such as the eardrum in our histological dataset, the 

results indicated that the gradient is not a reliable technique, since in some of our selected 

slices the contrast of the eardrum varies along its length, so the active contour may jump 

from one side to the other side of the structure. 

 

7.2 Future work 
- Digital colour images are composed of different (usually three) layers, each related to 

specific colour information (e.g., red, blue and green). In grey-scale images that are 

derived from colour images, the image layers are combined (e.g., averaged) and 

normalised. The colour histological images that we used for our experiments were 

converted to grey-scale images. We suggest that it may be profitable to exploit the 

colour information of the histological images, since the colour information may give 

extra information for the external (image) force and improve the performance of the 

active contours. 

 

- As discussed in Section 3.4, the internal force should not attempt to minimise the 

curvature for areas with constant curvature. In order to satisfy the condition, a filter 

was suggested (Lobregt & Viergever, 1995) to convolve with the internal force of 

each vertex. We used the same simple filter as they have suggested in order to get a 

more robust result. As Lobregt and Viergever (1995) mentioned, the filter can be 

designed as an adaptive filter. We also propose to find a sophisticated design for the 

filter in order to get a more robust result.  

 



 131

- We are interested in testing the performance of active contours with other 

modalities, such as x-ray CT and PET, and especially ultrasound images that contain 

a larger amount of noise than other types of images. 

 

- In our Oxiana programme for discrete dynamic contours, all user manipulations of 

the vertices must be performed using the Vertex List menu in the interface. It is 

suggested to improve the interface to make the use of the programme easier for the 

user, such as moving a vertex by explicitly using the mouse instead of using the 

Vertex List. Also, left clicking the mouse on a vertex could open a menu of all the 

manipulations possible for that vertex. 

 

- As we found in our experiments with open contours for segmentation of thin 

structures (e.g., eardrum), gradient cannot lead the active contours to rest on the 

centre of the structure and the contour may leap from one side to the other side of 

the structure. We propose to find an algorithm to detect the centre pixel, and it can 

be used to generate the external force for the open contours. 
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