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Summary

During speech listening, the brain could use contextual predictions to optimize sensory sampling and processing. We asked

if such predictive processing is organized dynamically into separate oscillatory time scales. We trained a neural network

that uses context to predict speech at the phoneme level. Using this model, we estimated contextual uncertainty and surprise

of natural speech as factors to explain neurophysiological activity in human listeners. We show, firstly, that speech-related

activity is hierarchically organized into two time scales: fast responses (theta: 4-10Hz) restricted to early auditory regions

and slow responses (delta: 0.5-4Hz) dominating in downstream auditory regions. Neural activity in these bands is selectively

modulated by predictions: the gain of early theta responses varies according to the contextual uncertainty of speech, while

later delta responses are selective to surprising speech inputs. We conclude that theta sensory sampling is tuned to maximize

expected information gain, while delta encodes only non-redundant information.

Introduction

In natural situations, the raw informational content of sensory inputs is astonishingly diverse and dynamic, which should be

challenging to the computational resources of the brain. Internal representations of our sensory context could alleviate some

of this ecological tension: Through learning and life experiences, we develop internal models that are thought to issue contex-

tual predictions of sensory inputs, yielding faster neural encoding and integration. Mechanistically, predictive coding from

internal representations of the perceptual context would inhibit the responses of early sensory brain regions to predictable

inputs; symmetrically, the gain of brain processes to sensory inputs would be increased in situations of greater contextual

uncertainty, with the resulting non-redundant information subsequently updating higher-order internal representations (Rao

& Ballard 1999, Friston 2005, Nobre & van Ede 2018, Arnal & Giraud 2012).
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An example where predictive inferences may be key to a socially significant percept is the processing of human language.

For instance, reading speed accelerates when context increases the predictability of upcoming words (Smith & Levy 2013).

Similarly, a word uttered in isolation (e.g., “house” vs. “mouse”) can be ambiguous to recognize; in continuous speech,

humans (Kalikow et al. 1977) and machines (Bahdanau et al. 2016) recognize words better when inferred from their context

(as in “Today, I was cleaning my house”). These behavioral findings are supported by neurolinguistic evidence: Semantic

expectations are typically manipulated experimentally via the empirical probability of a closing word (cloze) from a sequence

that primes its context. Less-expected sentence endings produce a deeper negative deflection of electroencephalographic

(EEG) signals at least 400 ms (N400) after the onset of the closing word (Kutas & Hillyard 1984, Frank et al. 2015, Kuperberg

& Jaeger 2016, Broderick et al. 2018).

These effects point at relatively late brain processes occurring after the acoustic features of the last word are extracted.

Thus they can be explained as a-posteriori brain responses to violations of semantic expectations (Van Petten & Luka 2012,

Kuperberg & Jaeger 2016). However, based on predictive coding theory (Rao & Ballard 1999, Friston 2005) we would

expect high-level semantic predictions to be channeled down to low-level phonetic predictions, thus affecting also early brain

processes. What is missing is a model of phonetic predictions that integrates both long-term (previous words, Broderick et al.

2018, Frank et al. 2015) and short-term (previous phonemes within a word, Brodbeck et al. 2018) contexts. For this reason,

we trained an artificial neural network (ANN) as a proxy for human contextual language representations. The ANN was

trained on a large corpus of 1,500 TED talks to predict the upcoming phoneme and word from preceding phonemes and

words and their respective timing in the speech streams. Figure 1 shows, by example, how the model continuously issues

predictions and updates its internal representations with speech inputs at the phonetic time scale.

If the human brain implements a similar predictive processing strategy, it requires an organizing principle to separate the

fast sampling of sensory information from slower evolving internal models that should be updated only with non-redundant

information. Neural oscillations have been suggested as an organizational principle in the temporal domain (Giraud & Poep-

pel 2012, Lakatos et al. 2005, Gross et al. 2013) due to their ability to parse the sensory input into packages of information.

Beyond sensory parsing, here we hypothesize that different oscillatory time scales organize predictive speech processing

across hierarchical stages of the auditory pathway. We expect from predictive coding theory that higher-order regions mani-

fest slower neurophysiological dynamics as prediction errors are accumulated to update internal models (Bastos et al. 2012).

Finally, we wished to clarify whether the fast sampling of sensory information in lower-order regions is in itself dependent

on predictions from context.

Results

We recorded time-resolved ongoing neural activity from eleven adult participants using magnetoencephalography (MEG,

Baillet 2017) while they listened to full, continuous audio recordings of public speakers (TED talks). Using regression,
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Figure 1: Figure 1. Contextual speech predictions at the phonetic time scale from an artificial neural network. (A)
An example segment of speech presented to the human participants (Audio) is shown along with its word- and phoneme-
level transcriptions. (B) Outputs of the artificial neural network trained on spoken language: prior to each phoneme,
the network estimates the respective probabilities of the upcoming phoneme and word. Contextual phoneme and word
probabilities are visualized in two dimensional plots (embeddings, projected using tSNE (Maaten & Hinton 2008)) in
which similar phonemes/words are grouped closely to each other. Probability values are represented by the size of
phonemes/dots/words. The actual observed phonemes/words are shown in red in the embedding maps. The predictions
depend on the semantic/syntactic context and are updated after each observed phoneme. We produced a freely-accessible
web app (https://pwdonh.github.io/pages/demos.html) for everyone to explore the ANN predictions and
the production of uncertainty and surprise measures over longer transcribed speech samples. See STAR methods and Figure
S1 for details on the network architecture and optimization.
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Figure 2: Figure 2. Contextual prediction features for neural signal regression. (A) We illustrate the meaning of features
uncertainty and surprise with example phoneme probabilities: uncertainty is sensitive to the context before observing the
next phoneme; surprise is inversely related to the probability of the actual observed phoneme in the present context. (B)
Neural signals are modeled with linear regression using three sets of time-resolved feature spaces: speech-audio (including
the acoustic envelope of the speech stream), uncertainty and surprise (see Figure S2B for a full list of regressors included in
these feature spaces). Multiple time-shifted versions of the regressors are entered into the design matrix (see Figure S2C).
The regression weights can be interpreted as temporal response functions (TRFs) showing the time course of the neural
response to the feature of interest.

we modelled the recorded neurophysiological signal fluctuations as a mixture of cortical entrainment by acoustic (Ding &

Simon 2012, Golumbic et al. 2013) and contextual prediction features. The two contextual prediction features we derived

at the phonetic time scale were uncertainty and surprise (Figure 2A). Contextual uncertainty is quantified by the entropy

of the predictive distribution of the upcoming phoneme. Surprise is a measure of unexpectedness for the phoneme actually

presented. These two measures are correlated. However, uncertainty uniquely quantifies the state of a predictive receiver

before the observation of the next phoneme in the current context, and thus how much the predictive receiver has to rely on

sensory information instead of predictions for correct perception. Surprise captures the actual added information carried by

a phoneme after it has been observed in the same context.

Speech-related neurophysiological activity is hierarchically organized in theta and delta bands.

The analysis was firstly aimed at identifying the brain regions and oscillatory time scales of cortical activity driven by

these speech features. We derived a regression model using a time-resolved temporal response function (TRF) approach

(Huth et al. 2016, Di Liberto et al. 2015, Golumbic et al. 2013). This approach entails estimating regression weights for

multiple regressors and different lags on a training subset of the MEG data (Figure 2B). Due to high correlations between

regressors, we used regularized (ridge) regression to stabilize the estimation of model parameters. We then used spatial

component optimization (Donhauser et al. 2018) to identify subsets of brain regions whose neurophysiological activity

was explained with similar TRFs in the regression model across participants (Figures S2 & S3). Figure 3A shows that

bilateral portions of the superior temporal gyrus (STG) and of the superior temporal sulcus (STS) were identified by the

mapping procedure. The first identified component comprised the primary auditory cortex (pAC). The second component
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included portions of the STG immediately anterior and posterior to primary auditory cortical regions, which are typical of

the downstream auditory/language pathway (de Heer et al. 2017, Kell et al. 2018, Liegeois-Chauvel et al. 1994, Fontolan

et al. 2014). We hereinafter refer to this second component as associative auditory cortex (aAC). The temporal profile (TRF)

of pAC comprised rapid successions of peaks and troughs, starting as early as 85 ms after phoneme onset (then at 150 ms

and 200 ms), akin to a damped wave in the theta frequency range, superimposed on a slower component with a pronounced

trough around 400 ms (Figure 3B-C). In striking contrast, the dynamics of aAC were dominated by a slow wave that peaked

after pAC (100-200 ms latency), with a subsequent trough 600 ms after phoneme onset.

These two time scales were revealed in a complementary fashion by computing the variance explained by the regression

model across the frequency spectrum in a test subset of the MEG data (using a cross-validation loop): Speech-related delta-

range ([.5,4] Hz) activity dominated in aAC, while faster theta ([4,10] Hz) activity was restricted to pAC (Figure 3D). These

distinct coherence profiles were not due to differences in spectral power between the two components (Figure S3C).

Taken together these first findings point at a temporal hierarchy of neural responses to ongoing spoken language (Gi-

raud & Poeppel 2012) and are compatible with a phenomenon of temporal downsampling in downstream regions (aAC) as

expected from predictive coding theory (Bastos et al. 2012).

Contextual uncertainty and surprise selectively modulate theta and delta band responses

To assess whether this temporal hierarchy supports predictive speech processing, we tested the specific contributions of

contextual uncertainty and surprise. Firstly, we compared the full regression model (predictive-coding model) to a reduced

alternative consisting of acoustic features only (speech-audio model). The analysis revealed that predictive-coding features

explained a significant (F (1, 10) = 88.03, p < .001) portion of the variance of observed neurophysiological signals during

speech listening: for the delta band on average 17 and 12 percent (pAC and aAC respectively), for the theta band 12 and

4 percent (Figure 4a). We show in Figure S4A that this effect is not explained by short-term transitional probabilities

(phonotactics), by comparing the ANN to simpler n-gram models.

Uncertainty and surprise are correlated in natural speech (r = 0.69 in the speech material used in the present study):

when an upcoming stimulus is uncertain it is also often surprising. We evaluated their respective contributions following

a partitioning strategy (de Heer et al. 2017) separating the additional explained variance (predictive coding minus speech-

audio model) into what was explained uniquely by uncertainty and surprise and what was shared between the two feature

spaces (Figure S4). We compared the uncertainty, surprise and shared variance partitions across the two spatio-temporal

components (pAC and aAC) and two frequency bands revealed previously (3-way interaction, partition × components ×

frequency: F (2, 20) = 8.31, p = .002). As expected, the shared contribution of entropy and surprise was the largest of the

variance partitions tested. But markedly, surprise was the strongest predictor of delta-band activity in pAC and aAC, and

uncertainty was the strongest predictor of theta-band activity in pAC (2-way interaction, partition [uncertainty & surprise]
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Figure 3: Figure 3. Speech-related neurophysiological activity is hierarchically organized in theta and delta bands.
(A), Two spatial components were extracted from the regression model in a data-driven manner: An optimization procedure
identified components that were well explained by speech-related features and showed functionally consistent responses
across participants (see STAR methods and Figures S2 & S3). The identified components corresponded to hierarchical
levels of the auditory pathway: here we refer to them as primary auditory cortex (pAC, essentially comprising BA41/42) and
association auditory cortex (aAC, comprising BA22), see Figure S3F for single subject cortical maps. (B) Temporal response
functions (TRF) averaged across all features for pAC (top) and aAC (bottom), showing distinct temporal response profiles
(CI: bootstrap confidence interval). Whereas pAC showed a sequence of early peaks and troughs resembling a damped theta
wave, aAC was dominated by responses with the dynamics of a delta wave. (C) Neural responses to the example speech
segment predicted by the regression model show how the distinct temporal shapes of the TRFs translate into continuous
time-series with distinct spectral features. (D) Performance of the regression model on held-out data across the frequency
spectrum. Distinct spectral profiles can be seen that correspond to the temporal profiles in b) and c): we observed a peak in
the theta range for pAC (top) in contrast to aAC (bottom), which showed more speech-related delta activity. The plots show
coherence between the modeled and recorded neural responses (coherence2 = explained variance, Theunissen et al. (2001),
spectral smoothing: .5 Hz & 3 Hz below & above 2 Hz)
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× frequency: F (1, 10) = 60.82, p < .001; Figure 4B). In Figure S4C, we show that this effect generalizes across the

different types of regressors used in the full regression model (Figure S2B). Table S3 shows that this effect is not explained

by differences in the spectral contents of regressors.

In the time domain, we compared the TRFs estimated in the full predictive-coding model (Figure 4C). We found that

contextual uncertainty modulated the amplitude of early components of the pAC TRF (60-120 ms and 230 ms), which is

consistent with the enhancement of a theta-wave response. We also found that the surprise induced by incoming phonemes

enhanced a slightly later response from aAC (80-160 ms), followed by the deepening of a later trough (230-420 ms) in pAC

(Figure 4C). This latter component is akin to the typical N400 response to low-probability endings (cloze) of word sequences

observed in scalp EEG (Kutas & Hillyard 1984, Frank et al. 2015, Broderick et al. 2018). The last detected effect of surprise

was between 550 and 700 ms in pAC, akin to the late positivity observed in response to expectation violations – another

EEG component (P600) well-studied in neurolinguistics (Van Petten & Luka 2012). These findings are consistent with the

enhancement of a delta-wave response.

Our data therefore suggest that contextual uncertainty increases the gain of early theta-band responses, whereas surprising

inputs elicit subsequent delta responses of downstream areas, possibly to update internal models.

Reduction of word-level uncertainty is explained by phoneme surprise.

The ANN model (Figure 1) enables the quantification of specific aspects of the update of internal models during speech

listening. For instance, the ANN can track how a current word is interpreted, as phonemes are perceived sequentially. The

update to the internal model by a phoneme is quantified by the word uncertainty reduction (WR). WR is defined as the

relative entropy between predictive word distributions before and after a given phoneme is presented (Figure 5A). Our data

shows that the WR metric correlates with phoneme surprise more strongly than with phoneme uncertainty (Figure 5B).

Indeed, we observed that the effects of WR on neural activity are similar to the effects of phoneme surprise. Adding WR

to the regression model leads to a moderate increase in explained variance in the delta band but not for theta band (interaction

model [with/without WR] × frequency: F (1, 10) = 7.05, p = .002, main effect of model for delta: F (1, 10) = 5.46,

p = .04, Figure 5D). We partitioned the variance explained by the full model into unique and shared variance components

after subtracting the effect of speech-audio regressors, as in the analyses in Figure 4B. Most of the explanatory power of

WR was shared with surprise, while surprise explains additional variance that is not accounted for by WR (see Figures 5E

& S5). This suggests that contextual surprise at the phoneme level quantifies the relevance of the phoneme for the update of

higher-level internal models, such as here, for the word-level interpretation.
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Figure 4: Figure 4. Contextual uncertainty and surprise selectively modulate theta and delta band responses. (A) We
compared cross-validation performances of the speech-audio model to those of a model with the predictive coding features
uncertainty and surprise. Predictive coding outperformed the speech-audio model across both spatial components for the
delta band and for aAC in the theta band. (B) We show (using variance partitioning) how much variance in the neural signal
was explained uniquely by uncertainty and surprise, as well as shared contributions from both features. While the shared
contribution was the largest (as expected, since the features are correlated), we found a remarkable difference between
frequency bands: delta-band activity was better explained by surprise and theta (which is dominant in pAC) was better
explained by uncertainty. Error bars show 95% CIs. (C) TRFs averaged for different feature spaces: these traces can be
interpreted as neural responses to a speech input of low uncertainty and surprise (grey traces), high uncertainty (blue traces)
and high surprise (red traces). Note that the effects of uncertainty and surprise complement the findings in the frequency
domain: uncertainty enhances early theta-like responses in pAC (starting at 60 ms), surprise enhances multiple delta-like
peaks in aAC and pAC (starting at 80 ms). * p < .05, ** p < .01, *** p < .001. See also Figure S4.
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Figure 5: Figure 5. Reduction of word-level uncertainty is explained by phoneme surprise. (A) Two predictive distribu-
tions are shown as in Figure 1B: they illustrate word-level predictions before and after receiving a phoneme (the word these
and the phoneme DH). We defined word uncertainty reduction (WR) as the relative entropy between the two distributions.
(B) We show the association of WR with phoneme-level uncertainty & surprise across all phonemes in our stimulus set in a
bivariate histogram alongside marginal histograms. WR has stronger assocation to phoneme surprise. (C) Illustration using
the example sentence from Figure 1: shown are word- & phoneme-level predictive distributions (word-level is zoomed) along
with the corresponding values of WR, uncertainty & surprise. Note that for the word create all three metrics are decreased
for the second phoneme; in contrast, for the word these, there is less uncertainty about the second phoneme, but both the
surprise and the associated WR are higher for the phoneme IY1 (the number 1 signifies the stressed version of the phoneme
IY in the CMU dictionary). This is because this phoneme constrains the interpretation of the word as these, whereas for the
word create there are still multiple possible continuations of the phoneme sequence K, R in the given context. (D) We show
the relative performance of a regression model containing the feature space WR in addition to speech-audio, uncertainty &
surprise. We observe a moderate increase in performance for the delta band. (E) We show the results of 3-way variance
partitioning in the form of Venn diagrams. The areas of circles and their overlaps illustrate the average explained variance by
the corresponding variance partition. We see that most of WR’s explanatory power is shared with phoneme surprise. Figure
S5 further shows the consistency of the effect for single participants. Note that, as in Figure 4B, variance partitioning was
performed after subtracting the variance explained by speech-audio regressors only.
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Discussion

We combined artificial neural network modelling with neurophysiological imaging to study hierarchical effects of natural

speech predictability in the auditory/language pathway. Our findings bridge a gap between two views of brain responses to

language stimuli, either as constructed from distinct event-related components (Kutas & Hillyard 1984) or as modulations of

ongoing oscillatory neurophysiological activity (Giraud & Poeppel 2012, Lakatos et al. 2005, Gross et al. 2013). We show

that during continuous speech listening, early event-related components emerge from stimulus-induced damped theta oscil-

lations in primary auditory regions. Contextual uncertainty about the upcoming phoneme increases the gain of these early

responses. This mechanism may provide downstream brain processing stages with higher signal-to-noise representations of

speech sounds. In contrast, these subsequent brain processing stages are marked by stimulus-induced delta waves that are

enhanced only when the incoming speech sound is informative (as quantified by surprise).

Our results thus suggest an intriguing organizing principle of speech processing for the learned allocation of brain pro-

cessing resources to the most informative segments of incoming speech inputs. This result was enabled by a novel approach.

1) We view each elementary speech input (phoneme) in reference to a listener’s internal predictive model, which we ap-

proximate by an artificial neural network: this allowed us to abstract across linguistic scales and calculate the expected

(uncertainty) and actual information gain (surprise) of a given speech input in context. 2) We view neurophysiological re-

sponses as expressions of underlying oscillatory time scales: this provides a unifying view of several previously described

temporally separated brain responses and instead, reveals spectral separation between faster and slower neural time scales in

the theta and delta ranges. 3) This spectral separation aligns with a functional division governed by the internal predictive

model: sensory sampling based on expected information gain is implemented at a relatively rapid time scale, while updates

of internal models based on actual information gain are implemented at a slower time scale.

Time scales in auditory and speech processing have been intensively studied, with the theta frequency range being viewed

as key to the temporal sampling of sensory information (Gross et al. 2013, Teng et al. 2017, van Wassenhove et al. 2007).

This process is suggested to be adaptive to the temporal contents of speech and the characteristics of the speech-motor

apparatus (Ghazanfar et al. 2013, Chandrasekaran et al. 2009). Our findings reach beyond these low-level characteristics

by suggesting that theta-rate sampling is optimized with respect to an internal predictive model, increasing sensory input

gain in uncertain contexts. Temporal downsampling along the auditory/speech pathway has been suggested as a mechanism

for hierarchical linguistic structure representations from sequential speech inputs (Giraud & Poeppel 2012). For instance, a

gradient of time scales in the temporal cortex was previously observed in electrophysiological recordings (Hamilton et al.

2018, Yi et al. 2019). Our present findings advance the comprehension of the neural mechanisms involved by specifically

relating neural signals in the delta band to speech information deemed as non-redundant with the internal predictive model.

Temporal downsampling along the hierarchical neural pathways has been derived theoretically from predictive coding

(Bastos et al. 2012). The theory has been used to explain spectral asymmetries in higher frequency bands such as gamma
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and beta in visual cortex (Bastos et al. 2015, Michalareas et al. 2016) and induced responses in the auditory cortex (Sedley

et al. 2016). However, the theory is applicable also for lower frequency ranges that we studied here: As discussed in the

previous paragraph, speech has been found to be preferentially sampled at theta frequency ranges. Thus the theory would

indeed predict that this information is accumulated downstream in the delta frequency range to update internal models.

The effect of phoneme surprise and its relation to word uncertainty reduction (WR) can be interpreted with reference to

the sentence comprehension theory by Levy (2008). This theory considers the problem of interpreting the syntactic structure

of a sentence incrementally word-by-word. It assumes that a perceiver holds a probability distribution p(T |contextt) over

multiple structures T that are compatible with the words processed so far and the context of the sentence. This distribution

changes with every word: some interpretations become implausible, while some others become more plausible (see Figure

5C). Levy (2008) show mathematically that the surprise of a given word in its context −logp(wt|contextt) is equivalent to

the uncertainty reduction in p(T ) induced by the word t. The surprise incurred by a word thus directly quantifies how much

it reduces the uncertainty w.r.t. the interpretation of a sentence.

Here we considered surprise at the phoneme level using an ANN trained to predict the next phoneme based on the

context of the last 35 phonemes (∼ 10 words). We should thus expect in analogy to Levy’s theory that the surprise incurred

by a phoneme quantifies how much it reduces the uncertainty w.r.t. the current word w as well as the interpretation of the

sentence T . From the ANN predictions we could explicitly quantify the reduction of uncertainty w.r.t the current word (WR).

Indeed we showed that WR is highly correlated to phoneme surprise and most of its explanatory power w.r.t. neural signals

is shared with phoneme surprise. Phoneme surprise explains more additional variance in the neural signals that cannot be

accounted for by WR: this is to be expected since a phoneme also reduces the uncertainty w.r.t the interpretation of the

sentence structure T . In our current model, we do not explicitly generate a distribution over possible sentence structures,

instead these are implicit in the ANN’s internal dynamics and lead to respective phoneme and word predictions.

The strong link between high-level internal models and lower-level surprise explains our findings of early effects of

contextual predictability. Late effects previously reported with EEG (N400, P600) are typically interpreted as marking

the increased processing demands induced by the occurrence of a surprising word (Kuperberg & Jaeger 2016), thus the

update of internal models as explained above. Here we also report early effects of contextual predictability on ongoing

neurophysiological signals that cannot be explained only by a hierarchical feed-forward process. These observations are

compatible with the view that predictions formed in higher-level brain networks are channeled back and inhibit the responses

of early sensory regions to predicted inputs (Rao & Ballard 1999, Friston 2005). So far this view has been debated in the

language domain (Kuperberg & Jaeger 2016) and the reproducibility of supporting evidence has been questioned (Nieuwland

et al. 2018, Nieuwland 2019). We believe our study shows, using natural speech instead of trial-based presentation of words

(Hamilton & Huth 2018), combined with novel modeling and analysis approaches, robust effects of speech prediction starting

from 60 up to 700 milliseconds following a speech input.

In that respect, the human brain performs differently from current automatic speech recognition (ASR) systems, in which
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predictive language models intervene only relatively late in the speech processing stream (Amodei et al. 2016, Bahdanau

et al. 2016), selecting the most likely word instance a posteriori from a ranked list of possible transcriptions of the acoustic

signal. The question remains whether these differences are imposed by the limited processing capacity of biological brains,

or whether ASR systems could themselves benefit from a fully predictive processing strategy mimicking the human brain’s.
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STAR Methods

Lead contact and materials availability

Further information and requests for resources should be directed to and will be fulfilled by the Lead Contact, Peter Don-

hauser (peter.donhauser@mail.mcgill.ca or peter.w.donhauser@gmail.com).

Experimental model and participant details

Participants

11 healthy native English speakers were recruited (20-34 years; 5 female) as participants. The study was approved by the

Montreal Neurological Institute’s ethics committee (NEU-11-036), in accordance with the Declaration of Helsinki. All

participants gave written informed consent and were compensated for their participation. All participants had normal or

corrected-to-normal vision and could comfortably read instructions presented to them during the MEG session. All partici-

pants reported normal hearing.

Method details

Speech dataset & MEG experimental stimuli

The speech data used in neural network training and the MEG experiment were taken from the TED-LIUM corpus (Rousseau

et al. 2014). This corpus contains audio files and transcripts of 1495 / 8 / 11 publicly available TED talks for training /

validation / test set, comprising 207 h / 96 min / 157 min of audio and 2.6 million / 17,868 / 27,814 words. Transcripts in

the original corpus are temporally aligned with audio at the segment level. These segments were on average ∼ 8 seconds

long and contained ∼ 28 words. We performed forced alignment using Prosodylab-Aligner (Gorman et al. 2011) to find

the times when individual phonemes and words appear within the segments provided by the original corpus. The alignment

procedure used the CMU pronouncing dictionary for North American English. Pronunciations for out-of-vocabulary words

in the corpus were added manually to the dictionary. The symbols used for individual phonemes in this paper are the ones

used by the CMU dictionary (Lenzo 2007) with numbers appearing after vowels indicating lexical stress (0: no stress, 1:

primary stress, 2: secondary stress).

We selected the words that appeared at least 8 times in the training set, resulting in a vocabulary Vw containing 10,145

words. The less frequent words were replaced by an unk (unknown) token. The vocabulary for phonemes Vp contained 69

separate phonemes (24 consonants + 15 vowels × 3 levels of lexical stress).

We selected four talks out of the TED-LIUM test set as stimuli for the MEG experiment (see table S1), expected to

appeal to most participants. Three of the talks were split up into two parts to produce a stimulus set for seven blocks of MEG
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recording less than ten minutes each. We manually verified the automatic (phoneme and word) alignment results for these

four talks using the Praat speech analysis software (Boersma et al. 2002).

Language model

We trained a recurrent neural network with long short-term memory (LSTM) cells (Hochreiter & Schmidhuber 1997) using

PyTorch (Paszke et al. 2017) on the speech dataset described above. Networks like these are usually trained e.g. to predict the

next word in a sequence based on the history of previous words (Zaremba et al. 2014), whereas here we train to predict the

next phoneme. We make two important additions to the basic architecture to adapt it to spoken language and phoneme-level

modeling: Firstly, we provide the network with timing information, namely the duration of phonemes and pauses. Since

there is no punctuation in spoken language, this can provide important syntactic information. Secondly, we combine word-

and phoneme-level inputs and predictions, since this helps the network hold semantic/syntactic information better than when

training only from phonemes.

Importantly, the trained network outputs the contextual probability for each phoneme at t

p(phoneme|contextt) (1)

where phoneme ∈ Vp and contextt = {phoneme1,..,t−1, duration1,..,t−1, pause1,..,t−1, word1,..,k−1}. Index t runs over

phonemes, whereas index k runs over words. This allows us to compute the contextual uncertainty as the entropy of the

phoneme prediction distribution at t as

Unct = −
∑

phoneme∈Vp

p(phoneme|contextt) log p(phoneme|contextt) (2)

as well as the surprise associated with the presented phoneme at t as

Surt = − log p(phonemet|contextt) (3)

Neural network architecture

In the following we describe the additions made to the standard word-level network (Zaremba et al. 2014) step-by-step,

comparing performances of networks using word, phoneme and timing information, namely:

• word-only

• words & timing

• phonemes & timing

• phonemes, words & timing
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. In Figure S1 we show the architecture of the network that performed best at modeling the speech data at the phoneme level.

For the different architectures explored, the input to the LSTM cells is encoded in the vector it and the output is the

vector ot, both of which are of size S (S will be used to scale the network to different capacities). The LSTM cell at a given

layer l = 1, .., L contains state variables hlt (hidden state) and clt (cell state or memory cell) and computes the transition:

hl−1
t ,hlt−1, c

l
t−1 → hlt, c

l
t (4)

Layer l = 1 receives the input to the network, so: hl−1
t = it, whereas the last layer l = L computes the output, so: hlt = ot.

We used two layers and dropout between the layers as a regularizer (the non-recurrent connections including connections to

and from ot and it (Zaremba et al. 2014)).

In the standard, word-only version of the network (Zaremba et al. 2014) we have the previous word at t − 1 encoded in

the input it of the network and the current word at t as the target. As is common in neural language models, the word at t−1

is represented in an embedding layer (Bengio et al. 2003) that is jointly trained with the LSTM network: this means that each

word in the vocabulary is mapped to a real-valued vector ewin [word] of size S. In the word-only network, the input to the first

LSTM layer is it = ewin
[wordt−1]. This can be formulated as a matrix multiplication, if we use the one-hot representation

of a word: this is a vector of size V that contains a 1 at the word’s index and 0’s everywhere else. Thus, to obtain the input

vector it, the one-hot representation is multiplied with the embedding matrix Ewin of size V × S, which contains all the

words’ embeddings in its columns. The words’ embedding vectors represent a word within a multidimensional space (here of

size S) in which semantic and syntactic relations between the words are represented by Euclidean distances. Similar words

appear close to each other in this multidimensional space, and different dimensions in this space represent different features

(semantic/syntactic) along which words can be similar/dissimilar. Please refer to Figure 1B for examples of embeddings.

The output of the last layer o is then conversely multiplied by the S×V output embedding Ewout followed by a softmax

nonlinearity. The output of the softmax is a probability distribution over the vocabulary, quantifying

p(word|contextt) = p(word|wordt−1,ht−1, ct−1) (5)

This probability can be influenced by the context of all words t = 1, .., t− 1 presented at test time, because this information

is recurrently encoded in the hidden and cell states (see equation 4) so we can say that

p(word|contextt) = p(word|word1,..,t−1) (6)

It is possible to tie the input and output word embeddings such that Ewout
= ET

win
: this decreases the expressiveness of the

network as a whole but decreases the number of parameters to be trained.

Because we train the network on spoken language, there is no punctuation; instead, important syntactic information can

be carried by the timing of and pauses between words. In the words & timing network, we use the duration of the word at t−1

and the duration of the following silence (durationt−1 and pauset−1) and encode them together with the word information

in input vector it. The two time-variables are quantized into Q = 20 discrete bins logarithmically spaced between 50ms
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and 10sec and subsequently fed through a Q-dimensional real-valued embedding for durations edur and silences esil. We

concatenate these time embedding vectors together with the word embedding vector to arrive at a (S + 2×Q)-dimensional

input vector it. The rationale for using quantization followed by an embedding (instead of just the continuous linear value in

milliseconds) is that the network can learn similarities of different timings from the data: the difference between a 500 ms

or a 1 second pause carries more information than the difference between a 19.5 second or a 20 second pause. This network

thus quantifies

p(word|contextt) = p(word|word1,..,t−1, durationt−1, pauset−1) (7)

The phonemes & timing network is equivalent to the words & timing network described in the last section. Instead of

words, we are providing the network with the phoneme at t − 1 as input and the phoneme at t as target, using input and

output embeddings for phonemes epin and epout
. Just as with word embeddings, the phoneme embeddings trained with this

network encode similarities between phonemes (note the very obvious clustering into consonants and vowels in Figure 1B.

This network quantifies

p(phoneme|contextt) = p(phoneme|phoneme1,..,t−1, durationt−1, pauset−1) (8)

where index t runs over phonemes.

Theoretically, it should be possible for the phoneme-level network to discover higher-order structure like words, gram-

matical structure and semantics only from the (low-level) phoneme input. It is difficult in practice however. Hence we

developed an architecture that makes combined use of phonetic and word-level information (phonemes, words & timing,

Figure S1). Here, the input vector it encodes the phoneme at t − 1, its duration and subsequent silence, as before. In ad-

dition, it encodes the previous word: this word could have been several phonemes before, thus we introduce an additional

index k to run over words rather than phonemes. We concatenate the embeddings corresponding to these four variables to

produce a (2 × S + 2 × Q)-dimensional input vector it. Targets for training are the current phoneme as well as the current

word: the output of the last layer o is separately fed through an output embedding for words Ewout and phonemes Epout

followed by a softmax nonlinearity. The network thus quantifies

p(phonemet, wordt|contextt) = (9)

p(phonemet, wordt|phoneme1,..,t−1, duration1,..,t−1, pause1,..,t−1, word1,..,k−1}) (10)

where index t runs over phonemes and index k runs over words. Refer to Figure 1A for contextual probabilities estimated

by the network and Figure S1D for an example data sequence).

Parameters and neural network results

The state vectors hlt and clt as well as embedding vectors eword and ephoneme are all of size S, and we tested different values

of S together with different dropout probabilities (200/650/1500 and 0/0.5/0.65 respectively (Zaremba et al. 2014)). Each
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of the three parameter settings was tested with tied or separate weights for input and output embeddings. Weights as well

as embedding vectors were initialized as uniformly random between −0.1 and 0.1 and biases set to zero. Hidden and cell

states were initialized to zero at t = 0, but hidden and cell states were copied over to the next training batch (batch size:

20) to preserve long-term context. Backpropagation through time was used to train all networks, with gradients propagated

through the last 35 inputs.

Results from the word-level networks in table S2 are shown in perplexity (PPL) which is derived from the average sur-

prise per word under the given model: e−
∑

t log p(wordt). We see, firstly, that larger networks (with higher dropout values)

performed better (lower PPL), thus we are not overfitting the training data. Secondly, we can see that adding timing infor-

mation to the input increases performance substantially, probably since it can provide similar syntactic cues to punctuation

in written language. For this reason we used timing in the phoneme-level networks, as well as the highest value S = 1500.

The results of the phoneme-level networks are shown in bit-per-phoneme (BPP), which is the average surprise per

phoneme under a given model, expressed in bits: −
∑
t log2 p(phonemet). We see from table S2 that providing the network

with additional word input increases performance (lowers BPP): likely, the network receiving only phoneme input has dif-

ficulty keeping higher-level information (syntax & semantics) in its memory. Tied embedding weights helped performance

in the case of the word-level network: the lower number of parameters to be estimated was beneficial. In the phoneme-level

network, tied weights led to decreased performance: here the flexibility of having different input and output embeddings

was beneficial. For MEG analyses, we thus used the architecture phonemes, words & timing with non-tied weights to model

predictions at the phonetic time-scale.

N-gram modelling

We generated a simpler model of phoneme predictions to compare against the ANN. This was to verify that observed effects

of predictions could not be explained by short-term transition probabilities. The probability of a phoneme in context can be

expressed as the proportion of times the phoneme in question has been following the preceding phoneme (in case of a bigram

model) or the last two phonemes (in case of a trigram model) in the training data. The simplest model is a unigram model,

which only considers the frequency of a given phoneme regardless of its context.

These models are very data greedy. In our case, we have 69 phoneme categories, hence for a bigram model there are

692 = 4,761 possible phoneme combinations to consider; for a trigram 693=328,509 and for a 4-gram 694=22,667,121

combinations. Our training set in the TEDLIUM corpus contained around 8,000,000 phonemes, thus we fitted uni-, bi- and

trigram models to have enough data for fitting.

We trained the models on the same data as the neural networks. The n-gram models did not model the TED-talk language

data as well as the neural network (BPP: 5.13, 4.23 and 3.51 for uni-, bi- and trigams respectively, compared to 2.30 for the

ANN used in the main text). For MEG analyses, we computed surprise and uncertainty from the predictive distributions

obtained from bi- and trigram models (as in equations 2 and 3). For unigram models we computed only surprise, since the

predictive distribution is by definition equal for each phoneme.
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Word uncertainty reduction

The ANN generates predictive distributions over both phonemes and words at each time point t (see equation 10). We

therefore computed how much the uncertainty w.r.t. the current word was reduced by the phoneme at time t. This value,

called word-uncertainty reduction (WR), was derived from the Kullback-Leibler divergence or relative entropy between two

predictive distributions

D(pt+1||pt) = −
∑
w∈Vw

pt+1(w) log
pt+1(w)

pt(w)
(11)

where pt+1(w) = p(wt+1|contextt+1) and pt(w) = p(wt|contextt).

Note the discontinuity at word boundaries: if t+1 is the beginning of a new word, the probability p(wt+1|contextt+1) is

w.r.t. this new word and p(wt|contextt) is the remaining uncertainty of the previous word before receiving its last phoneme.

To reflect the assumption that the last phoneme in a word lifts the remaining uncertainty w.r.t the old word, we replaced

D(pt+1||pt) by D(p̃t+1||pt) where p̃t+1 contains 1 for the word that finishes at t and zero for all other words. We can show

from equation 11 that this reduces to

D(p̃t+1||pt) = −1 log
1

pt(w)
= log pt(w) (12)

which is the negative surprise of the word at timepoint t.

MEG experiment

Data acquisition

The participants were measured in a seated position using a 275-channel VSM/CTF MEG system with a sampling rate

of 2400 Hz (no high-pass filter, 660 Hz anti-aliasing online low-pass filter). Three head positioning coils were attached

to fiducial anatomical locations (nasion, left/right pre-auricular points) to track head movements during recordings. Head

shape and the locations of head position coils were digitized (Polhemus Isotrak, Polhemus Inc., VT, USA) prior to MEG data

collection, for co-registration of MEG channel locations with anatomical T1-weighted MRI. Eye movements and blinks were

recorded using 2 bipolar electro-oculographic (EOG) channels. EOG leads were placed above and below one eye (vertical

channel); the second channel was placed laterally to the two eyes (horizontal channel). Heart activity was recorded with one

channel (ECG), with electrical reference at the opposite clavicle.

A T1-weighted MRI of the brain (1.5 T, 240 x 240 mm field of view, 1 mm isotropic, sagittal orientation) was obtained

from each participant, either at least one month before the MEG session or after the session. For subsequent cortically-

constrained source analyses, the nasion and the left and right pre-auricular points were first marked manually in each par-

ticipant’s MRI volume. These were used as an initial starting point for registration of the MEG activity to the structural T1

image. An iterative closest point rigid-body registration method implemented in Brainstorm (Tadel et al. 2011) improved the

anatomical alignment using the additional scalp points. The registration was visually verified.

The scalp and cortical surfaces were extracted from the MRI volume data. A surface triangulation was obtained using
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the Freesurfer (Fischl 2012) segmentation pipeline, with default parameter settings, and was imported into Brainstorm. The

individual high-resolution cortical surfaces (about 120,000 vertices) were down-sampled to about 15,000 triangle vertices to

serve as image supports for MEG source imaging.

Experimental procedure

Participants received both oral and written instructions on the experimental procedure and the task. In each of the seven

blocks of recording, participants listened to one TED talks; the order of talks was counterbalanced between participants.

Participants were instructed to fixate on a black cross presented on a gray background. At the end of each block, they were

presented with several statements about the material presented to them. Participants judged with a button press whether the

statements were true or false. Out of the 55 questions, the participants answered correctly on average 46 questions (individual

participants: 50, 49, 46, 53, 39, 41, 41, 48, 47, 45, 48 correct answers), indicating that all participants listened to the talks

attentively.

The audio signal was split and recorded as an additional channel with the MEG data such that audio and neural data

could be precisely synchronized. To decrease the possibility of electromagnetic contamination of the data from the signal

transducer, ∼1.5m air tubes between the ear and the transducer were used such that the transducer could be tucked into a

shielded cavity on the floor (>1m from the MEG gantry, behind and to the left of the participant).

MEG data processing

Artifact removal and rejection

We computed 40 independent components (ICA, Delorme et al. 2007) from the continuous MEG data filtered between .5 and

20Hz and downsampled to 80Hz. We identified components capturing artifacts from eye-blinks, saccades and heart-beats

based on the correlation of ICA component time-series and ECG/EOG channels. We computed a projector from the identified

mixing/unmixing matrices (Φ/Φ+) as I−ΦΦ+ and applied it to the raw unfiltered MEG data to remove contributions from

these artifact sources. Subsequently, noisy MEG channels were identified by visually inspecting their power spectrum and

removing those that showed excessive power across a broad band of frequencies. The raw data were further visually inspected

to detect time segments with excessive noise e.g., from jaw clenching or eye saccades contamination not captured by any

ICA component.

Data coregistration

Since our recording blocks were relatively long (∼ 10 minutes, see table 2), participants’ head position could shift over the

course of a run. We used the continuous recordings of participants’ head position to cluster similar head positions: In each

run we performed k-means clustering of the head-position time-series (9 time-series, x/y/z position for each coil) into eight

clusters. We computed gain matrices Gc and source imaging operators Kc based on the average head position in each cluster

c = 1, .., 8 ∗ 7 (8 clusters for seven blocks).
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Forward modeling of neural magnetic fields was performed using the overlapping-sphere model (Huang et al. 1999). A

noise-normalized minimum norm operator (dSPM, Dale et al. 2000) was computed based on the gain matrix G of the forward

model and a noise covariance matrix, which was estimated from same-day empty-room MEG recordings. The source space

was defined by the cortical triangulation and at each vertex the source orientation was constrained to be normal to the cortical

surface. This produced a 15000 (sources) × 275 (channels) source imaging operator K.

We then define the average (15000 × 15000) resolution matrix across head positions c

Γ =
1

nc

∑
c

KcGcnc (13)

where nc is the number of time samples belonging to cluster c and perform singular value decomposition of this matrix

Γ = UΓSΓVT
Γ . The M first singular vectors define the spatial basis for the coregistered data X used for the rest of the

analyses, where M is the index of the singular value that cuts off 99.9 % of the singular value spectrum. The MEG data are

thus projected into a low-dimensional space as

Xc = XMEG
c (KT

c UT
Γ ) (14)

Note that we can move back to the source (XUΓ) or the channel space (XcUΓGT
c ) through a linear transformation of the

data (see Figure S3). We finally downsampled the data matrix X to 150Hz for faster data processing and applied a high-pass

filter of 0.5Hz to avoid slow sensor drifts. We refer to the projected data matrix X as coregistered MEG signals in this paper.

Ridge regression

The regression analysis described in the following was performed using custom code written in python using numpy and

scipy. Some code was adapted from the Github repository alexhuth/ridge.

Let X and Xnew be the (N,Nnew) ×M data matrices for training and test set respectively, where (N,Nnew) are the

number of samples in time andM is the number of signals. Let M and Mnew be the (N,Nnew)×K design matrices, where

K is the number of features used for prediction. The MEG data are predicted as a linear combination of the design matrix

columns (see Figure S2) as

X̂ = MB (15)

In standard regression, the weights B are estimated as

B = VS−1UTX (16)

from the singular value decomposition of the design matrix M = USVT . Instead of just inverting the singular values as

done above, ridge regression adds a penalty β that regularizes the solution (Hoerl & Kennard 1970). We calculate

dj = sj/(s
2
j + β2) (17)
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for each singular value sj and fill the ridge diagonal matrix D = diag(d) to calculate the solution

B = VDUTX (18)

To evaluate the prediction we then apply these weights to the design matrix of the test set

X̂new = MnewB (19)

= MnewVDUTX (20)

and compute a goodness-of-fit measure between predicted and recorded signals.

Optimizing spatial components

In MEG/EEG channel data, we observe linear mixtures of the underlying sources. Thus our goal is not to predict the data

on the channel but on the level of physiological sources, which can be estimated by spatial filtering (Baillet et al. 2001,

Blankertz et al. 2008). As we described in a previous paper (Donhauser et al. 2018), we can design spatial filters in a

data-driven manner by specifying a quality function on the source signal s = Xw

argmax
w

f(s) = argmax
w

f(Xw) (21)

that captures a hypothesized property of the source signal s. The spatial filters are optimized on the training set, as are the

regression weights B.

In this paper we are interested in sources that are well explained by our model M. Thus we optimize f(s) as the ratio of

explained variance to unexplained variance as

argmax
w

V ar(X̂w)

V ar((X− X̂)w)
= argmax

w

wT X̂T X̂w

wT (X− X̂)T (X− X̂)w
(22)

a value that is proportional to an F -statistic. This can be solved in the form of a generalized eigenvalue problem (GEP)

C1w = λC2w (23)

where C1 = X̂T X̂ and C2 = (X− X̂)T (X− X̂), resulting in a set of spatial filters W = [w1,w2, ...,wM ] ordered by the

ratios λ. The regression model for the spatially filtered signals si, i = 1, ...,M is thus given by

ŝi = X̂wi = M(Bwi) (24)

The matrix W = [w1, ...,wM ] performs the function of a spatial filter, whereas the fields generated by these sources (the
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spatial patterns) are given by the inverse (Haufe et al. 2014): P = W−1. We refer to the set of spatial filters/patterns and

their corresponding signals as spatial components in the main text. We regularize the spatial filter optimization (Donhauser

et al. 2018) by diagonal loading of matrices C1 and C2 parameterized by the regularization parameter α as

Creg = (1− α)C + αTr[C]M−1I (25)

Group-optimized spatial components

The optimization procedure described above results in Mj spatial components for each participant j = 1, .., 11 in this study.

These components are defined by the matrices containing spatial filters Wj and spatial patterns Pj . Associated with each

component is a score that we use to select patterns that are well described by our regression model (the correlation between

predicted and observed component signals). Retaining only components exceeding a certain correlation threshold (see 2.4)

produces a set of components that form a low-dimensional subspace in MEG channel space (Donhauser et al. 2018). We

define W∗
j as theM×Lj dimensional spatial filter matrix, with Lj the number of spatial components retained for participant

j. To compare components across participants we rotate the subspace axes in order to maximize the similarity of regression

weights across participants, thus we find a rotation matrix Rj for each participant such that the resulting regression weights

BjW
∗
jRj (26)

are highly correlated across participants. This is achieved using canonical correlation analysis (CCA) for several sets of

variables (Kettenring 1971) using an implementation in python (Bilenko & Gallant 2016). Note that the CCA is solved by

invoking the GEP, as in the spatial component optimization procedure described above.

We obtained cortical maps for the rotated spatial components as |RTP∗UΓ|. These maps were smoothed with a 3mm

kernel and projected to a high-resolution group template surface in Brainstorm (Tadel et al. 2011). Note that, while the

regression weights (and thus the temporal response profile) of the identified components are optimized to be similar across

participants, cortical maps can be different for each participant. To evaluate consistencies of cortical maps across the group,

individual participants’ maps were averaged across the seven cross-validation runs and z-scored across space. At each

cortical vertex we obtained a bootstrap distribution of the group mean; we then thresholded the maps by keeping the vertices

where 99% of bootstrap values were greater than 1. The bootstrap-z-scores in Figure 3A are generated by taking the mean

of the bootstrap distribution, subtracting 1, and dividing by the standard deviation of the bootstrap distribution. We show

individual participant maps in Figure S3F that were generated equivalently by averaging and bootstrapping over the seven

cross-validation runs and keeping vertices where 99% of bootstrap values had a mean > 2.

Regressors

The regressors we used to model MEG data in response to TED talks are organized into three feature spaces: the speech-

audio, uncertainty and surprise feature space (Figure S2).

The speech-audio feature space includes three regressors: the a) speech envelope extracted from the audio file that was
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presented to participants. The envelope was extracted by computing the square root of the acoustic energy in 5ms windows

and linearly interpolating to the MEG data sampling rate (150Hz). The b) speech on/off regressor is based on the results from

the transcription alignment. A given time-point in the audio file is classified to be part of a phoneme, a non-speech sound, or

a silence. The regressor includes a 1 if the time-point is part of a word/phoneme and zeros otherwise. The c) phoneme onset

regressor includes a 1 at the start of a phoneme and 0’s otherwise.

The uncertainty and surprise feature spaces are based on the values defined in equations 2 and 3. For both metrics

we generate three different regressors, as shown in Figure S2: a step regressor including the uncertainty/surprise value

throughout the duration of a phoneme, an impulse regressor, including the uncertainty/surprise value at the start of a phoneme

and a regressor that features uncertainty/surprise values in interaction with the envelope (step regressor multiplied by speech

envelope). To avoid extreme values (outliers) to drive the results, we bin uncertainty and surprise values into 10 separate bins

according to their distribution across the speech material before producing the regressors.

Similar to other papers, we use what is called a TRF (in M/EEG, Di Liberto et al. 2015, Golumbic et al. 2013) or voxel-

wise modelling (in fMRI, Huth et al. 2016) approach. We replicate each regressor at different temporal lags τ to account

for the a-priori unknown temporal response profile. Different from other studies, we use here a multi-resolution approach,

where lags are densely spaced at short latencies and more widely spaced at long latencies (see Figure S2). This allows us to

model also low-frequency components in the MEG signal (requiring long lags) while keeping the number of to-be-estimated

regressors low. Note that the regression model remains unchanged by this approach and we still make predictions at the full

sampling rate. A different way to reduce the number of to-be-estimated regressors would be to use a set of basis functions

such as a wavelet basis to be convolved with the original regressors. Regression weights would then be estimated per basis

function rather than per lag.

Cross-validation scheme

We perform cross-validation in a leave-one-block-out fashion, fitting the regression models on MEG data of six blocks

(training set) and evaluating performance on one left out block (test set). Before performing the regression we remove all

time samples marked as bad during preprocessing and then z-score the columns of the training set’s design matrix M and

MEG data X. The same normalization is applied to the test set using means and standard deviation of the training set, since

these can be seen as learned parameters. The cross-validation procedure is repeated and results are averaged across all seven

blocks.

In each cross-validation run we use the training data (Xj and M) to estimate separate regression weights Bj for each

participant j. More precisely, we fit four different models containing feature spaces:

• speech-audio MABA
j (speech-audio model)

• speech-audio and uncertainty MUBU
j (uncertainty model)

• speech-audio and surprise MSBS
j (surprise model)

• speech-audio, uncertainty and surprise MPBP
j (predictive-coding model)
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Subsequently, we extract subject-optimized and group-optimized spatial components (W∗
j and Rj , see 1.4.4) using

training data for the full predictive-coding model. Using a bootstrap procedure (see 1.4.6) we select 1) hyper-parameters for

regression regularization and 2) the number of spatial components Lj to retain per participant.

We finally use the test data (Xj,new and Mnew) to estimate performance of the regression models by computing coher-

ence between the predicted

ŜA,U,S,Pnew = MA,U,S,P
new BA,U,S,P

j W∗
jRj (27)

and recorded signals

Snew = Xj,newW∗
jRj (28)

Coherence is computed as a spectrally resolved performance measure (Theunissen et al. 2001, Holdgraf et al. 2017) and is

defined as

Coh[f ] =
|〈S[f ]Ŝ[f ]∗〉|√

〈S[f ]S[f ]∗〉〈Ŝ[f ]Ŝ[f ]∗〉
(29)

where Ŝ[f ] and S[f ] are the fourier coefficients at frequency f of the predicted and recorded signals respectively. For

spectral estimation we used a multitaper procedure as implemented in MNE-Python (Gramfort et al. 2013) with a frequency

smoothing of 0.5 Hz and 3 Hz for the two frequency ranges shown in Figure 3 (.4-2 and 2-20 Hz respectively).

Variance partitioning

Cross-validation gives us an estimate of how much variance in a given neural signal is explained by the different regres-

sion models (speech-audio, uncertainty, surprise & predictive-coding) computed as the squared correlation values R2. The

regression models are, however, combinations of feature spaces. To evaluate how much explained variance is unique to or

shared between the feature spaces of interest we used variance partitioning similar to the approach in de Heer et al. (2017)

The idea behind variance partitioning can be understood by the venn diagrams in Figure S4B that illustrate the set

theoretic computations performed to obtain unique and shared variance components.

Since explained variance R2 is an empirical estimate in the cross-validation procedure, it is possible to obtain variance

partitions that are not theoretically possible: e.g. when a joint model containing two feature spaces (due to overfitting during

training) explains less variance than one of the individual feature spaces, we can and up with a negative unique variance

component. We used the procedure described in de Heer et al. (2017) that considers the estimated explained variance of a

model as a biased estimate R2
obs = R2 + b and solves for the lowest possible bias values that produce no nonsensical results

(a constrained function minimization problem).

We used magnitude squared coherence (the square of the measure defined in equation 29) between predicted and observed

signals as a measure of explained variance in the two frequency bands of interest (delta: .5-4 Hz; theta: 4-10 Hz) computed

with multitaper frequency smoothing of 3 Hz. The unique and shared variance partitions were computed (according to the

procedure described above) in and then averaged across each of the seven blocks.
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Temporal response functions

The TRFs shown in this paper are derived from spatially filtered and rotated regression weights (BjW
∗
jRj , see equation 26)

which are reshaped to produce a time-series sampled at temporal lags τ . In Figure 3B we averaged TRFs across all regressors

in the model to illustrate the temporal response profile of the two spatial components. For Figure 4C, we averaged TRFs

within each of the three feature spaces and displayed the resulting time-series for speech-audio as well as the summed time-

series speech-audio + uncertainty and speech-audio + surprise to show the modulation of the basic waveform by uncertainty

and surprise respectively.

Selecting hyperparameters

In each cross-validation run we estimate the best spatial regularization parameter α (equation 25), and the best ridge regu-

larization parameter β (equation 17) and the number of subject-level spatial components Lj . We do this using a bootstrap

procedure (Huth et al. 2016): we randomly draw 150 chunks of 600 time samples (4 seconds) from the training data to hold

out and train on the rest of the training samples using a grid of 10 different α values logarithmically spaced between 10−4

to 10−0.5 and 20 different β values logarithmically spaced between 100.5 to 103.5. We test performance for each pair of

regularization values on the held out samples by the correlation coefficient. We repeat this procedure 15 times and average

correlations for each α, β and spatial component i to obtain correlations rα,β,i. We then take a weighted average of these

correlation values as

rα,β =
∑
i

rα,β,i|
∑
α

∑
β

rα,β,i| (30)

and select the hyperparameters α∗ and β∗ that maximize this value. This way the hyperparameter selection is driven more

strongly by the high-performing components. We then perform significance tests on the correlation values rα∗,β∗,i and select

the number of spatial components Lj such that we can reject the null hypothesis

rα∗,β∗,i = 0, p < .0001, for i = 1, ..., Lj (31)

The above hyperparameter selection was conducted for the main results presented in Figures 3 and 4. To reduce compu-

tation time, we opted for a more restricted hyperparameter selection for the other analyses: 5 instead of 10 different α values

logarithmically spaced between 10−4 to 10−0.5, 15 instead of 20 different β values logarithmically spaced between 100.5

to 103.5 and 5 instead of 15 bootstrap iterations. Note that for all model comparisons we report results obtained through

equivalent hyperparameter selection procedures.

Quantification and statistical analysis

No participants were excluded from the analysis. All errorbars represent 95% bootstrap confidence intervals computed using

5999 bootstrap samples.
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Cross-validation results

We compared performance of the full model (Speech-audio, Entropy & Surprise) to the speech-audio model using repeated-

measures ANOVA in R. See main text and Figure 4A for results.

We evaluated the variance partitioning results using a three-way repeated-measure ANOVA in R with factors Partition

(uncertainty unique, surprise unique, shared), Frequency band (delta, theta) and Spatial component (pAC, aAC). See main

text and Figure 4B for results.

Temporal response functions

We performed a randomization procedure to evaluate the lags at which uncertainty and surprise modulate neural responses

significantly (i.e. the regression weights exceed those computed for a null model). We estimated TRFs for the full predictive

model on combined data from all blocks, once for the correct uncertainty and surprise values (observed TRFs) and 110

times while permuting pairs of uncertainty and surprise values randomly across phonemes in a block (null TRFs). We then

check at which temporal lags τ the TRFs exceed (in absolute value) the null TRFs in at least 107 (p < .05, two-tailed)

of randomization runs. This evaluates significance on the single-subject level. To obtain a group statistic, we refer to the

prevalence test we described before (Donhauser et al. 2018). According to this test, in order to reject the majority null

hypothesis (effect present in less than half of the population) at pmaj < .01, we require >= 10 out of 11 participants to

show a significant effect. In Figure 4C we show the lags at which this majority null hypothesis is rejected for uncertainty

and surprise.

Data and code availability

The phoneme and word alignments generated during this study for the TED-LIUM corpus are available at github.com/

pwdonh/tedlium_alignments. The code for the artificial neural network training is available at github.com/

pwdonh/tedlium_model. The raw MEG data generated during this study are available upon request from the lead

contact Peter Donhauser (peter.donhauser@mail.mcgill.ca or peter.w.donhauser@gmail.com).
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Fig. S1 Neural network architecture. Related to Fig 1. The language model used in this paper is a recurrent neural

network that generates contextual predictions on the phonetic timescale. Consider the sentence ”I had to create these images”

at timepoint t the network is trying to predict the second phoneme M of the word images. (A) The input to the network at t

is the last word these, the last phoneme IH1, the (discretized) duration of the last phoneme and the (discretized) duration of

any pause after the last phoneme (here none). As is standard in neural language modeling these symbolic inputs are encoded

in a real-valued vector called an embedding (Bengio et al. 2003). The four resulting vectors are concatenated to form the

input vector it. (B) The input is processed through two layers of LSTM cells (Hochreiter & Schmidhuber 1997). These

cells process the current input and integrate it with information from the previous inputs which is encoded in their hidden

states through recurrent connections. (C) The LSTM layers output a real-valued vector ot which encodes the contextual

predictions the network generated. The predictions are read out from this vector using a linear transformation followed by a

softmax resulting in the two probability distributions for the two targets p(phoneme|contextt) and p(word|contextt). (D)
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The table illustrates the sequence of inputs to, and targets for, the neural network. Note that the phonemes and words change

at separate time scales.
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Fig. S2 Regression model. Related to Fig. 2. (A) The recorded MEG signals X are estimated by linear combinations

of the design matrix columns. Notably, the design matrix contains copies of the same regressor at different lags such

that the corresponding regression weights B capture the (a-priori unknown) temporal response profile to a given regressor.

After regression fitting of X, we optimize spatial component matrix W that can be applied to recorded signals XW and

regression weights BW. The resulting subject-optimized spatial component signals maximize explained variance by the

regression model. Based on these components we compute a rotation matrix R that can be applied to recorded signals

XWR and regression weights BWR. The resulting group-optimized spatial component signals maximize consistency
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of regression weights across the group. (B) The three feature spaces speech-audio, uncertainty & surprise contain three

individual regressors each. (C) Here we show the different lags at which regressors were entered in the design matrix along

with an example of estimated regression weights, illustrating the multi-resolution approach that we took in our analysis. (D)

We show the association of uncertainty & surprise across all phonemes in our stimulus set in a bivariate histogram alongside

marginal histograms. (E) We show the spectral content of regressors for individual blocks alongside 95% confidence intervals

as shaded regions.
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Fig. S3 Spatial and spectral characterization of components. Related to Fig. 3. (A) This panel illustrates the spatial

transformations used in the paper. Please refer to STAR methods for detailed description of the analysis. We represent two

spatial components from an example subject in the different data spaces. Bidirectional arrows show the linear transformations

that are used to move data between different spaces. Top row: Raw data are recorded in MEG channel space and can be

projected using source imaging onto the cortical surface for anatomical interpretation of results (Huang et al. 1999, Dale

et al. 2000). Bottom left: Regression model fitting is done in a Mj-dimensional signal space where different head positions

c are co-registered. This is obtained by source imaging followed by a dimensionality reduction step, which can be combined

in one linear transformation. Middle right: After the regression fitting, we compute subject-optimized spatial components

(Blankertz et al. 2008, Donhauser et al. 2018, Haufe et al. 2014), that maximize explained variance by the regression model.
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Bottom right: From these we compute group-optimized components based on canonical correlation analysis that maximize

consistency of regression weights across subjects. (B) Spatial component maps for individual participants. The maps are

thresholded using a bootstrap procedure (p < .01), see STAR methods. Note that, while the regression weights (and thus the

temporal response profile) of these group-optimized spatial components are optimized to be similar across subjects, cortical

maps can be different for each subject. This is an important strength of the analytical approach. C The top row shows

coherence between regression modelled and recorded MEG data for the two spatial components as in Figure 3D. The bottom

row shows the spectral content of the two spatial components’s signals (expressed in decibels with respect to empty room

recordings processed the same way). The difference in coherence spectra can not be explained by differences in spectral

power per se.
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Fig. S4 Effects of Surprise and Uncertainty. Related to Fig. 4. (A) Comparison of ANN with simpler count-based models

(n-grams): We show the relative performance of models containing speech-audio, surprise and uncertainty computed using

n-grams of different order (STAR methods). Models S-A (speech-audio-only) and ANN correspond to the models compared

in Fig 4A. ANN-derived surprise & entropy outperforms n-gram models at explaining variance in the neural data (except for

theta in aAC), mirroring its superior performance at modelling the language data per se (STAR methods). Error bars show
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95% CIs. (B) Variance partitioning: the individual feature spaces speech-audio, uncertainty & surprise contain the regressors

illustrated in Fig. S2. We estimate explained variance for three joint and one single feature space models, with the goal to

partition the total explained variance into unique and shared variance components of interest. The steps involved in variance

partitioning are based on set theory and require simple arithmetic plus an estimation of a bias factor as described in a previous

paper (de Heer et al. 2017). (C) Comparison of regressor types: We show the variance partitioning results as in Fig 4B

computed using the three different regressor types shown in Fig S2B. The interaction [Delta/Theta] x [Surprise/Uncertainty]

in pAC is significant for all regressor types; Step: F (1, 10) = 70.78, p < .001, Impulse: F (1, 10) = 36.77, p < .001,

Interaction: F (1, 10) = 29.23, p < .001. Error bars show 95% CIs.
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Fig. S5 Word Uncertainty Reduction (WR) shares explanatory power with phoneme surprise. Related to Fig. 5.

We show results of a 3-way variance partitioning analysis on a model containing feature spaces speech-audio, (phoneme)

uncertainty & surprise as well as WR. Explained variance per partition is shown for each subject; venn diagrams illustrate the

average explained variance in the respective variance partitions. We see that WR explains neural signal variance in the delta

band for both spatial components, but most of this explained variance is shared with surprise. Surprise has a larger unique

contribution than WR. For clarity, we only show significant comparisons within the unique and within the shared variance

partitions. Note that the spatial component optimization was performed on the full regression model (including uncertainty,

surprise & WR) to not bias the results towards certain feature spaces. The correlation of spatial component maps with the

ones extracted before (including uncertainty & surprise, see Figure 3A) is high (pAC: r = .995, aAC: r = .997).
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Table S1 Speech material presented to participants (MEG). Related to Figure 1 The talks were taken from the test set

of the TED-LIUM corpus (Rousseau et al. 2014), splitting up long talks into two parts to allow for shorter MEG blocks.

Block Talk Length (sec) Words Phonemes

1 DanielKahneman 2010 (part 1) 516 1358 4887

2 DanielKahneman 2010 (part 2) 488 1304 4601

3 JamesCameron 2010 (part 1) 474 1397 4770

4 JamesCameron 2010 (part 2) 519 1573 5420

5 JaneMcGonigal 2010 (part 1) 549 1775 6198

6 JaneMcGonigal 2010 (part 2) 631 2058 7270

7 TomWujec 2010U 387 1124 4182
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Table S2 Neural network results on the TEDLIUM test set. Related to STAR methods. Results are shown as perplexity

(PPL) for the words and the words & timing networks and bits-per-phoneme (BPP) for the phonemes & timing and the

phonemes, words & timing networks. Low values signify better performance. The best performing model for PPL and BPP

respectively is shown in bold. The phonemes, words & timing network in bold was subsequently used for MEG analysis.

Word level

Model PPL (words) PPL (words & timing)

LSTM (200, tied) 103.71 94.54

LSTM (650) 94.39 87.17

LSTM (650, tied) 92.97 85.11

LSTM (1500) 91.00 83.01

LSTM (1500, tied) 88.13 81.26

Phoneme level

Model BPP (phonemes & timing) BBP (phonemes, words & timing)

LSTM (1500) 2.39 2.30

LSTM (1500,tied) 2.45 2.32
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Table S3 Comparison of regressor spectral power and explained neural variance. Related to Figure 4. Shown are

ANOVA results for the interaction between feature space (Uncertainty/Surprise) and frequency band (Theta/Delta). The first

row shows the results for the spectral content of regressors (as shown in Figure S2E): there is no significant interaction. The

following rows show the results for explained neural variance, both with variance partitioning (Unique variance) and without

(Explained neural variance). These interactions are highly significant. Since the analysis for regressor spectral content can

only be done across blocks, we also performed ANOVAs across blocks (while averaging across subjects) for explained neural

variance. These interactions are also highly significant.

Variable sampled across F df1 df2 p

Regressor spectral power blocks 1.339 1 6 .291

Unique variance (pAC) blocks 105.2 1 6 <.001

Unique variance (pAC) subjects 60.82 1 10 <.001

Explained neural variance (pAC) blocks 98.22 1 6 <.001

Explained neural variance (pAC) subjects 58.97 1 10 <.001
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