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Abstract

A kinetic modelling approach for the quantification of in vivo tracer studies with dynamic
positron emission tomography (PET) is presented. The approach is based on a general
compartmental description of the tracer’s fate in vivo and determines a parsimonious
model consistent with the measured data. The technique involves the determination of
a sparse selection of kinetic basis functions from an overcomplete dictionary using the
method of basis pursuit denoising. This enables the characterization of the systems im-
pulse response function from which values of the systems macro parameters can be esti-
mated. These parameter estimates can be obtained from a region of interest analysis or
as parametric images from a voxel based analysis. In addition, model order estimates are
returned which correspond to the number of compartments in the estimated compartmental
model. Validation studies evaluate the methods performance against two pre-existing data
led techniques, namely graphical analysis and spectral analysis. Application of this tech-
nique to measured PET data is demonstrated using [11C]diprenorphine (opiate receptor)
and [11C]WAY-100635 (5-HT1A receptor). Whilst, the method is presented in the context
of PET neuroreceptor binding studies, it has general applicability to the quantification of
PET/SPET radiotracer studies in neurology, oncology and cardiology.

Keywords: PET, Tracer Kinetics, Compartmental Modelling, Parameter Estima-
tion, Basis Pursuit Denoising, Sparse Basis Selection
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1 Introduction

The development of Positron Emission Tomography (PET) over the last two decades has pro-
vided neuroscientists with a unique tool for investigating the neurochemistry of the human
brain in vivo. The ever increasing library of radiolabelled tracers allows for imaging of a range
of biochemical, physiological and pharmacological processes. Each radiotracer has its own dis-
tinct behavior in vivo and their characterization is an essential component for the development
of new imaging techniques and their translation into clinical applications. Estimation of quan-
titative biological images from the rich 4D spatio-temporal data sets requires the application
of appropriate tomographic reconstruction and tracer kinetic modelling techniques. The latter
are used to estimate biological parameters by fitting a mathematical model to the time-activity
curve (TAC) of a region of interest or voxel. Calculations at the voxel level produce parametric
images but are associated with an increase in noise for the TACs. Analysis strategies must
therefore be robust to noise, yet fast enough to be practical.

There are a range of quantitative PET tracer kinetic modelling techniques which return biolog-
ically based parameter estimates. These techniques may be broadly divided into model-driven
methods (Kety 1951; Sokoloff et al. 1977; Phelps et al. 1979; Mintun et al. 1984; Huang and
Phelps 1986; Gunn et al. 2001) and data-driven methods (Gjedde 1982; Patlak et al. 1983;
Patlak and Blasberg 1985; Logan et al. 1990; Logan et al. 1996; Cunningham and Jones
1993). The clear distinction is that the data-driven methods require no a priori decision about
the most appropriate model structure. Instead this information is obtained directly from the
kinetic data.

Model-driven methods use a particular compartmental structure to describe the behaviour of
the tracer and allow for an estimation of either micro or macro system parameters. Well estab-
lished compartmental models in PET, (see Figure 1), include those used for the quantification
of blood flow (Kety 1951), cerebral metabolic rate for glucose (Sokoloff et al. 1977) and for
neuroreceptor ligand binding (Mintun et al. 1984). Further developments have produced a
series of reference tissue models which avoid the need for blood sampling (Blomqvist et al.
1989; Cunningham et al. 1991; Hume et al. 1992; Lammertsma et al. 1996; Lammertsma and
Hume 1996; Watabe et al. 2000). Parameter estimates are obtained from a priori specified
compartmental structures using one of a variety of least squares fitting procedures; linear least
squares (Carson 1986), non-linear least squares (Carson 1986), generalized linear least squares
(Feng et al. 1996), weighted integration (Carson et al. 1986) or basis function techniques
(Koeppe et al. 1985; Cunningham and Jones 1993; Gunn et al. 1997).

Data-driven methods such as graphical analysis (Gjedde 1982; Patlak et al. 1983; Patlak and
Blasberg 1985; Logan et al. 1990; Logan et al. 1996) or spectral analysis (Cunningham and
Jones 1993) derive macro system parameters from a less constrained description of the kinetic
processes. The graphical methods (Patlak and Logan plots) employ a transformation of the
data such that a linear regression of the transformed data yields the macro system parameter
of interest and are attractive and elegant due to their simplicity. However, they require the
determination of when the plot becomes linear, they may be biased by statistical noise (Slifstein
and Laruelle 2000) and they fail to return any information about the underlying compartmental
structure. Appendix A gives a formal derivation of the Logan plot and shows that it is valid
for an arbitrary number of compartments for both plasma and reference input models when
the data are free from noise. Spectral analysis (Cunningham and Jones 1993) characterizes
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Figure 1: A range of PET compartmental models commonly used to quantify PET radio-
tracers. These include models for tracers that exhibit reversible and irreversible kinetics and

models which use either a plasma or reference tissue input function.

the systems impulse response function (IRF) as a positive sum of exponentials and uses non-
negative least squares to fit a set of these basis functions to the data. The macro system
parameters of interest are then calculated as functions of the IRF (Cunningham and Jones
1993; Gunn et al. 2001). Spectral analysis also returns information on the number of tissue
compartments evident in the data and is defined as a transparent technique. Schmidt (1999)
showed that for the majority of plasma input models the observation of all compartments led
to only positive coefficients, and as such the spectral analysis (Cunningham and Jones 1993)
solution using non-negative least squares is valid. However, it is straightforward to deduce
that for reference tissue input models negative coefficients can be encountered and that this
approach is strictly not valid (see Appendix C in Gunn et al. (2001)).

Recently, we have published general theory for both plasma input and reference tissue input
models (Gunn et al. 2001). This work shows that a general PET tracer compartmental
system may be characterized in terms of its impulse response function (IRF), and that this is
independent of the administration of the tracer and is therefore applicable to both bolus and
bolus-infusion methodologies. The term tracer excludes multiple injection protocols involving
low specific activity injections which are classed as non-tracer studies and lead to non-linear
compartmental systems. In brief, a general PET tracer compartmental model leads to a set
of first order linear differential equations. This set of equations may be solved to yield an
expression for the total tissue radioactivity concentration in terms of either a plasma input
function or a suitable reference tissue input function. These results are derived from linear
systems theory which lead to the deduction that the IRF is comprised solely of exponentials and
a delta function (Gunn et al. 2001). This work forms the foundation for the presented method;
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Data-driven estimation of parametric images based on compartmental theory (DEPICT).

DEPICT allows for the estimation of parametric images or regional parameter values from
dynamic PET data. DEPICT requires no a priori description of the tracers fate in vivo,
it derives the model description from the data and it returns the number of compartments
(model order). This transparent modelling technique has application to a wide range of PET
radiotracers but the emphasis here is with respect to the analysis of radioligands which bind
to specific neuroreceptor sites.

2 Theory

This section introduces the theory behind DEPICT; Firstly, the general forms for plasma input
and reference tissue input models are presented, secondly, key parameters for neuroreceptor
binding studies are cast in this framework, and thirdly, the general parameter estimation ap-
proach is constructed using basis functions and solved via basis pursuit denoising. The method
encompasses the majority of linear compartmental systems which are applicable to tracer stud-
ies with an arbitrary input function. It assumes that there is only one form (the parent
compound) in which radioactivity enters the tissue from the arterial plasma. Specifically, those
models which are defined by Definitions 1 and 2 in Gunn et al. (2001) are considered. These
sets of models encompass all non-cyclic systems, the subset of cyclic systems in which the
product of rate constants is the same regardless of direction for every cycle and requires the
eigenvalues of the system to be distinct.

2.1 Plasma Input Models

The general equation for a plasma input compartmental model is given by,

CT (t) = VBCB(t) + (1− VB)
n∑

i=1

φie
−θit ⊗ CP(t). (1)

where n is the total number of tissue compartments in the target tissue, ⊗ is the convolution
operator, VB is the fractional blood volume, CT ,CP , and CB are the concentration time courses
in the target tissue, plasma and whole blood respectively. The delivery of the tracer to the

tissue is given by K1 =
n∑

i=1

φi.

Reversible Kinetics [θi > 0]

For compartmental models which exhibit reversible kinetics the volume of distribution, VD ,
which is equal to the integral of the impulse response function is given by,

VD =
n∑

i=1

φi

θi

. (2)
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Irreversible Kinetics [θi6=n > 0, θn = 0]

For compartmental models which exhibit irreversible kinetics the net irreversible uptake rate
constant from plasma, KI , is given by,

KI = φn. (3)

2.2 Reference Tissue Input Models

The general equation for a reference tissue input compartmental model is given by,

CT (t) = φ0CR(t) +
m+n−1∑

i=1

φie
−θit ⊗ CR(t). (4)

where m is the total number of tissue compartments in the reference tissue, and n is the total
number of tissue compartments in the target tissue, CT and CR are the concentration time
courses in the target and reference tissues respectively and RI (= φ0) is the ratio of delivery
of the tracer between the target and reference tissue. This definition excludes the presence
of blood volume components to either of the tissues. Explicit formulation including a blood
volume term has been given previously (Gunn et al. 2001).

Reversible Target Tissue Kinetics [θi > 0]

For reference tissue models which exhibit reversible kinetics in both the target and reference
tissues the volume of distribution ratio is given by the integral of the impulse response of the
system,

VD

V ′
D

= φ0 +
m+n−1∑

i=1

φi

θi

. (5)

Irreversible Target Tissue Kinetics [θi6=m+n−1 > 0, θm+n−1 = 0]

For reference tissue models which exhibit irreversible kinetics in the target tissue and reversible
kinetics in the reference tissue the normalised irreversible uptake rate constant from plasma is
given by,

KI

V ′
D

= φm+n−1. (6)

2.3 Parameters for Neuroreceptor Binding Studies

For reversible neuroreceptor binding studies the binding potential may be calculated from
the macro parameters, using either a plasma or reference tissue input function, under the
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assumption that the volume of distribution of the free and non-specific binding is the same
in the target and reference tissues. Throughout this paper the term binding potential is used
interchangeably to refer to BP (the binding potential as originally defined by Mintun et al.
(1984)), BP .f2 and BP .f1 where f2 and f1 are the tissue and plasma free fractions respectively.
For a reference tissue input analysis BP .f2 is the only binding potential estimate possible,
whilst with a plasma input analysis it is possible to obtain estimates for BP .f1 , BP .f2 and if
a separate measure of the plasma free fraction exists BP . The binding potential is a useful
measure of receptor specific parameters which includes the both the maximum concentration
of receptor sites and the affinity,

BP =
Bmax

KDTracer
(1 +

∑
i

Fi

KDi
)
, (7)

where Bmax is the maximum concentration of receptor sites, KDTracer
is the equilibrium disasso-

ciation rate constant of the radioligand, Fi and KDi
are the free concentration and equilibrium

disassociation constants of i competing ligands. To derive values for both the receptor con-
centration and affinity it is necessary to perform a multi-injection study with differing specific
activities of the the radioligand. A summary of commonly used receptor binding parameters
and their calculation from the general form of the IRF are given in Table 1, for further details
see (Gunn et al. 2001). The relative merits of these different binding parameters are discussed
elsewhere (Laruelle 2000).

Parameter Target Reference Input Calculation

VD R − CP

∑n
i=1

φi

θi

KI I − CP φn

BP .f1 R R CP

∑n
i=1

φi

θi
−
∑m

i=1
ϕi

ϑi

BP .f2 R R CP

∑n
i=1

φi
θi∑m

i=1
ϕi
ϑi

− 1

BP .f2 R R CR φ0 − 1 +
∑m+n−1

i=1
φi

θi
KI

V ′
D

I R CR φm+n−1

Table 1: Calculation of commonly used binding parameters from the general impulse re-
sponse function. φ and θ are the parameters for the target tissue, ϕ and ϑ are the parameters
for the reference tissue and R and I denote reversible and irreversible tissue kinetics respec-

tively.
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2.4 Construction of the General Model in a Basis Function Frame-
work

Plasma input1 and reference tissue input PET compartmental models are characterized by,

CT (t) =

[
φ0δ(t) +

q∑
i=1

φie
−θit

]
⊗ CI (t). (8)

where CT is the tissue concentration time course and CI is the concentration time course of
the input function (plasma or reference tissue). This can be expressed as an expansion on a
basis,

CT (t) =
N∑

i=0

φiψi(t), (9)

where

ψ0(t) = CI (t), (10)

ψi(t) =

∫ t

0

e−θi(t−τ)CI (τ)dτ. (11)

A set of N values for θi may be pre-chosen from a physiologically plausible range θmin ≤ θi ≤
θmax. Here, the θi values are spaced in a logarithmic manner to elicit a suitable coverage of the
kinetic spectrum. Other possibilities for the spacing of the basis exist such as an equi-angular
scheme (Cunningham et al. 1998). For data that has not been corrected for the decay of
the isotope θmin may be chosen as (or close to the decay constant (θmin = λ min−1) for the
radioisotope and θmax may be chosen as a suitably large value (θmax = 6 min−1). For reversible
systems, where the calculation of VD or BP .f2 is the goal, the choice of a value for θmin which
is slightly bigger than λ can suppress the calculation of infinite VD and BP .f2 values from
noisy data. PET measurements are acquired as a sequence of (F ) temporal frames. Thus,
the continuous functions must be integrated over the individual frames and normalized to the
frame length to correspond to the data sampling procedure. The tissue observations, y, already
exist in this form and correspond to,

y = [y1 . . . yF ]T ,

(12)

yj =
1

tej − tsj

∫ tej

tsj

CT (t)dt,

1Here, the blood volume term for plasma input models is treated as a plasma volume term (i.e. CB (t) =
CP (t)) which enables us to express both the plasma and reference tissue input cases in the same framework.
This is simply so that we may be concise in our notation. To use a whole blood volume term ψ0 = CP is
replaced by ψ0 = CB in equation (10).
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and the matrix of kinetic basis functions (or dictionary), Ψ, are pre-calculated as,

Ψ =

ψ01 ψ11 . . . ψN1
...

...
...

...
ψ0F ψ1F . . . ψNF

 ,

(13)

ψ0j =
1

tej − tsj

∫ tej

tsj

CI (t)dt,

ψij =
1

tej − tsj

∫ tej

tsj

∫ t

0

e−θi(t−τ)CI (τ)dτdt,

where tsj and tej are the sequences of start and end frame times (j = 1, . . . , F ). For all practical
purposes (i.e. choosing a large enough value for N to obtain a good coverage of the kinetic spec-
trum), this leads to an overcomplete basis (N > F − 1) which by definition is non-orthogonal.
Examples bases for a plasma and reference tissue input are displayed in Figure 2. To determine
the fit to the data it is necessary to solve the underdetermined system of equations,

(a) Plasma input basis (b) Normalised plasma input basis

(c) Reference tissue input basis (d) Normalised reference tissue input basis

Figure 2: Example Dictionaries (Ψ)
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y ∼= Ψφ. (14)

To account for the temporally varying statistical uncertainty of the measurements it is more
appropriate to consider the weighted least squares problem,

W
1
2y ∼= W

1
2Ψφ, (15)

where W is the inverse of the covariance matrix. Given the statistical independence of the
frames, W is diagonal. These diagonal elements can be approximated from the total image
TAC and frame durations (Mazoyer et al. 1986). The weighted least squares solution is simply

obtained by weighting both the data and the basis functions i.e. y is replaced by W
1
2y and Ψ

is replaced by W
1
2Ψ. On solution of this equation the appropriate macro parameters (VD , KI ,

K1,
VD

V ′
D
, KI

V ′
D
, RI ) may be calculated from the φ’s (see equations 2,3,5, and 6). If the data are

not corrected for the decay of the isotope, then λ should first be subtracted from the θ values..

2.5 Solution of the General Model by Basis Pursuit Denoising

Standard least squares techniques are not applicable because of the overcomplete basis which
leads to an under-determined set of equations. This ill-posed problem requires an additional
constraint to impose a unique solution on the estimation process. This constraint is chosen
to be consistent with prior knowledge about the solution; namely that the solution will be
sparse in the basis coefficients. This constraint has also been used in the wavelet community,
for the estimation of sparse representations from over-complete dictionaries (Chen 1995; Chen
et al. 1999). The motivation for sparseness is consistent with the expectation that the data is
accurately described by a few compartments (such as the models in Figure 1).

To transform the problem so that a unique solution exists it is necessary to change the metric
from ordinary least squares. The introduction of a regularizer or penalty function to the
standard least squares metric offers a framework for this,

min
φ

1

2

∥∥∥W 1
2 (y −Ψφ)

∥∥∥2

2
+ µ ‖φ‖p, (16)

where the regularization parameter µ(> 0) controls the trade-off between approximation error
and sparseness, Ψ is the overcomplete basis, φ are the basis coefficients to be determined and
y is the observed data. The addition of an Lp norm to the standard L2 norm in equation
16 allows for a uniquely determined parameter estimation process. Some possible choices for
Lp are L0 (atomic decomposition), L1 (basis pursuit de-noising), and L2 (ridge regression)
(Chen 1995). The three regularisers have different characteristics and implementations. Both
atomic decomposition and basis pursuit denoising promote a sparse solution which is consistent
with our expectation of a compartmental model consisting of just a few tissue compartments,
whilst ridge regression will encourage all parameters to be non-zero. Atomic decomposition
is computationally demanding due to its combinatorial nature. Both basis pursuit de-noising
and ridge regression can be constructed in a quadratic programming framework. Given these
factors, a good choice for the estimation process is basis pursuit denoising as this balances both
a sparse solution with a computationally feasible parameter estimation approach. The basis
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pursuit denoising solution to the problem is presented here,

min
φ

1

2

∥∥∥W 1
2 (y −Ψφ)

∥∥∥2

2
+ µ ‖φ‖1, (17)

With the introduction of slack variables basis pursuit de-noising can be written as a simple
bound constrained quadratic program, (Chen 1995; Chen et al. 1999),

min
x

1

2
xTHx + cT x, (18)

such that xi ≥ 0 and where,

H =

[
ΨTWΨ −ΨTWΨ
−ΨTWΨ ΨTWΨ

]
, (19)

c = µ1−
[

ΨTWy
−ΨTWy

]
, (20)

x =

[
φ+

φ−

]
. (21)

The basis coefficients are given by,

φ = φ+ − φ−. (22)

The quadratic program can be solved readily using standard optimisers (Mészáros 1998). Thus,
given a suitable regularization parameter, the general compartmental model can be fitted to
the data. A method which enables the selection of an appropriate regularization parameter is
now considered.

Selection of the Regularization Parameter (µ)

Basis pursuit denoising requires the determination of the regularization parameter, µ, for the
penalty term. Here, this is obtained by the method of leave one out cross-validation (LOOCV)
(Shao 1993; Hjorth 1994). LOOCV is a ”resampling” method which allows the generalisation
error to be estimated. Fits are performed in which each data point is omitted in turn, and
the generalisation error is then estimated by summing up the prediction error for each omitted
data point. The regularization parameter, µ, is chosen to minimize this estimate (see Figure
3). To achieve a more robust estimate of the most appropriate µ value LOOCV is applied to
a set of time activity curves and the mean µ value is selected.

Model Order and Transparency

The presented method is transparent because it returns information about the underlying
compartmental structure. The number of non-zero coefficients returned corresponds to the
model order which is related to the number of tissue compartments. The number of non-zero
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D2

D1

D3

µ Too Small
µ Correct
µ Too Large

Figure 3: Effect of the regularization parameter (µ) and selection via leave one out cross
validation: When the µ value is too small the data (•) are overfitted and when the value is
too big the data are underfitted. The ”best” µ value is chosen using LOOCV. A data point is
omitted (◦) and the data are fit for a set of µ values. The error in the models prediction of the
omitted data point is then calculated in a least squares sense (i.e. D2

i ). This is repeated for
the omission of each data point in turn and the resultant generalisation errors are summated.
A µ is selected by choosing the value of µ which minimises this generalisation error. The figure
shows how the parsimonious model minimises the generalisation error (i.e. D2

2 < D2
3 < D2

1).

components is counted as the number of distinct peaks within the spectrum. The method
will often include two peaks next to each other in order to approximate an exponential in
between them. This occurrence is treated as a single non-zero coefficient. For plasma input
models the model order equals the number of tissue compartments (ignoring the blood volume
component) and for reference tissue models the number of non-zero coefficients corresponds to
the total number of tissue compartments in the reference and target tissues.

Whilst, the model order dictates the number of compartments, any decision about the true
model configuration is limited by the problem of indistinguishability. Figures 4 and 5 depict
the sets of models which are equivalent in terms of model order for plasma input and reference
tissue input models. If one requires a compartmental description of the tracer, and the set is
not singular, then it is necessary to invoke biological information about the system in order to
select amongst the possible models.

3 Methods

For DEPICT and spectral analysis the tissue and plasma data were uncorrected for the decay
of the isotope. Instead, a decay constant was allowed for in the exponential coefficients (decay
constant for [11C]: λ = 0.034 min−1). For the Logan analysis the tissue and plasma data were
pre-corrected for the decay of the isotope.
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33

Figure 4: Indistinguishability for plasma input models. (top) Model Order=1: One pos-
sible configuration, (middle) Model Order=2: Two possible configurations, (bottom) Model

Order=3: Four possible configurations.

DEPICT

The Basis Pursuit denoising approach was implemented with 30 basis functions (logarithmically
spaced between 0.048 and 6 min−1). The number of basis functions was chosen to be 30 based on
a balance between precision and computation time (data not shown). The weighting matrix was
determined from the true TAC activity and the frame duration as described previously (Gunn
et al. 1997). The regularization parameter, µ, was determined by numerically minimising
the LOOCV error across a discrete set of logarithmically spaced µ values (10−3.5 ≤ µ ≤
100.5). For the 1D simulations, the parameter µ̂ was determined as the mean value from the
1000 realisations. For parametric imaging the µ̂ value was obtained from a series of LOOCV
estimates (µi) obtained from random voxel locations contained within a brain mask. This
process examined at least 20 voxels and continued until the relative precision of µ̂ was less than
50%,

t0.975,dfσ(µ)√
df + 1 µ

< 0.5, (23)
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22

33

44

Figure 5: Indistinguishability for reference tissue input models. (top) Model Order=2: One
possible configuration, (middle) Model Order=3: Four∗ possible configurations, (bottom)
Model Order=4: Eight∗ possible configurations. ∗There are twice as many possible configu-

rations than are shown, as the reference and target tissues may be reversed.

where df is the degrees of freedom and is given by the length of µ− 1. µ̂ was then estimated
as the mean of the vector µ. DEPICT is available at http://www.bic.mni.mcgill/r̃gunn.

Spectral Analysis

Spectral analysis was implemented using the non-negative least squares algorithm (Cunning-
ham and Jones 1993) with the identical basis and weighting matrix as were used for DEPICT.

Logan Analysis

The Logan analysis (Logan et al. 1990; Logan et al. 1996) was implemented as a linear
regression of the transformed data after 45 minutes.
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3.1 1D Simulations

Simulations were performed to assess the stability of the three methods to different noise
levels. A measured input function from a PET scan was used in conjunction with a two tissue
compartmental model to simulate noise free data representative of a target tissue (K1 = 0.4
(mL plasma).(mL tissue)−1 , k2 = 0.2 min−1, k3 = 0.4 min−1 and k4 = 0.1 min−1) and a
reference tissue (K ′

1 = 0.4 (mL plasma).(mL tissue)−1 , k ′
2 = 0.4 min−1, k ′

5 = 1 min−1 and
k ′
6 = 1 min−1). 90 minutes of data were simulated for a total of 24 temporal frames (3x10s,

3x20s, 3x60s, 5x120s, 5x300s, 5x600s). The noise free simulated data are shown in Figure 6.
For a range of noise levels 1000 realisations of noisy target tissue TAC’s were generated by

(a) Plasma input function (b) Reference tissue TAC (c) Target tissue TAC

Figure 6: 1D Simulation Data: Noise free time activity curves

adding normally distributed noise proportional to the activity/frame duration at each point.
The noise variance was scaled so that a value of 1 corresponded to the largest noise free TAC
value. These data were then analyzed in two different ways; 1) using the plasma input function
the noisy target tissue TAC’s were fitted with the basis pursuit method, the Logan plot and
spectral analysis to derive VD estimates, 2) using the reference tissue input function the noisy
target tissue TAC’s were fitted with the basis pursuit method and the Logan plot to derive
BP .f2 estimates.

3.2 4D Simulations

Simulated dynamic PET data were generated using PETSim, a dynamic PET simulator (Ma
et al. 1993; Ma and Evans 1997) as described previously (Aston et al. 2000). In short, the
simulator takes an MRI image volume segmented into 28 regions, each of which is assigned an
activity value, and generates a simulated PET volume. The resolution and noise characteristics
where chosen to correspond to the ECAT HR+ PET camera (CTI, Knoxville, TN) in 3-D mode
with a resolution of 4 x 4 x 4.2 mm FWHM at the center of the field of view and images were
reconstructed using a 6mm FWHM Hanning filter. A simulated [11C]SCH 23390 data set was
generated using a measured plasma input function and a two tissue compartmental model to
simulate regional tissue kinetics using rate constants for different brain regions taken from
human PET data, K1 (0.08 to 0.13 ml plasma−1 min−1), k2 (0.24 to 0.37 min−1), k3 (0 to
0.14 min−1), k4 (0.1 min−1) for 34 time frames (4x15s, 4x 30s, 7x60s, 5x120s ,14x300s). The
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cerebellum was simulated with a one tissue compartment model. Two dynamic data sets were
generated; a noise free data set and the other consistent with an injection of 370MBq of activity.
The two data sets were analysed with DEPICT to estimate parametric images of VD and model
order.

3.3 Measured Data Sets

Two measured data sets, which were taken from ongoing clinical studies (MRC Cyclotron
Unit, Hammersmith Hospital, London U.K.), were analysed with DEPICT. Both data sets
were acquired on the ECAT EXACT3D (CTI, Knoxville, TN) (Spinks et al. 2000). The data
were reconstructed with model based scatter correction and measured attenuation correction
using the method of filtered back projection (ramp filter, 0.5 Ny). The reconstructed images
had a resolution of 4.8 x 4.8 x 5.6 mm at the centre of the field of view :

11C Diprenorphine (opiate receptor): 130 MBq of the radioligand was injected into a normal
male volunteer and acquisition consisted of 32 temporal frames of data (1x50s, 3x10s,
7x30s, 12x120s, 6x300s, 3x600s). Continuous arterial sampling and metabolite analyses
were performed during the scan which allowed for the generation of a metabolite corrected
plasma input function as described previously (Jones et al. 1994). DEPICT was used to
estimate parametric images of VD and model order using a plasma input analysis.

11C WAY-100635 (5-HT1A receptor): 243 MBq of the radioligand was injected into a normal
male volunteer and acquisition consisted of 22 temporal frames of data (1x15s, 3x5s,
2x15s, 4x60s, 7x300s, 5x600s). A region of interest was defined on the cerebellum for the
extraction of a reference region TAC. DEPICT was used to estimate parametric images
of BP .f2 and model order using a reference tissue input analysis.

4 Results

4.1 1D Simulations

A summary of the results from the 1D noise simulations are presented in Figure 7 for the
plasma input model. DEPICT was able to obtain a good fit to the data. Both DEPICT and
spectral analysis performed well in terms of parameter and model order estimation. Table 2
shows that DEPICT produces the lowest Mean Square Error (MSE) of the three methods.

The reference tissue input simulations are summarised in Figure 8 and Table 3. Again DEPICT
obtained a good fit to the data and a reasonable model order estimation. Table 3 shows that
DEPICT produces the lowest Mean Square Error (MSE) of the two methods.
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(a) Example DEPICT fit (b) DEPICT spectrum from fit in
(a)

(c) DEPICT VD (d) Spectral analysis VD (e) Logan analysis VD

(f) DEPICT Model Order (g) Spectral analysis Model Order

Figure 7: 1D Simulation: Plasma Analysis. In subfigures (f) and (g) the colour bar indicates
the fraction of fits which corresponded to a particular model order.

Noise Level 0 0.01 0.02 0.04 0.08 0.16 0.32 0.64

DEPICT µ̂ 0.0001 0.0100 0.0120 0.0138 0.0328 0.0482 0.1990 0.4190
MSE 0.0002 0.0004 0.0011 0.0036 0.0107 0.0267 0.0815 0.2190

Logan analysis MSE 0.0123 0.0127 0.0137 0.0180 0.0356 0.1040 0.5670 0.9840

Spectral analysis MSE 0.0089 0.0089 0.0093 0.0103 0.0149 0.0325 0.0942 0.2280

Table 2: 1D Simulation: Summary Parameters for VD estimation with a plasma input
function. Mean Squared Error (MSE), Regularization Parameter µ̂.
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(a) Example DEPICT fit (b) DEPICT spectrum from fit in (a)

(c) DEPICT BP .f2 (d) Logan analysis BP .f2

(e) DEPICT Model Order

Figure 8: 1D Simulation: Reference Tissue Analysis. In subfigure (e) the colour bar indicates
the fraction of fits which corresponded to a particular model order.

Noise Level 0 0.01 0.02 0.04 0.08 0.16 0.32 0.64

DEPICT µ̂ 0.0001 0.0010 0.0014 0.0026 0.0056 0.0187 0.0414 0.0869
MSE 0.0077 0.0081 0.0085 0.0155 0.0356 0.1060 0.2790 0.8180

Logan analysis MSE 0.0108 0.0128 0.0167 0.0345 0.1230 0.4040 1.7400 4.1400

Table 3: 1D Simulation: Summary Parameters for BP .f2 estimation with a reference tissue
input function. Mean Squared Error (MSE), Regularization Parameter µ̂.
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4.2 4D Simulations

Parametric images estimated from the noisy 4D realisation using DEPICT were of good quality
and are presented in Figure 9. DEPICT accurately estimates the number of tissue compart-
ments used in the simulation, (see Figure 9b), with two tissue compartments estimated on
average within the cortical regions and one tissue compartment on average within the cerebel-
lum.

(a) VD image

(b) Model Order image

Figure 9: 4D Simulation: Parametric images estimated using DEPICT.

The regularization parameter was calculated as µ̂ = 0.045 (see Figure 10(a)). DEPICT was
also applied to the noise free data set and this allowed for the calculation of the percentage
error in the VD estimate. The error distribution is given in Figure 10(b).

4.3 Measured Data

Both the parametric images of VD for [11C]diprenorphine and BP .f2 for [11C]WAY-100635
were of good quality and reflected the known distribution of opiate and 5-HT1A receptor sites
respectively. The model order images for both radioligands showed less structure than the 4D
simulation but both reflected the model order expected for [11C]diprenorphine (Jones et al.
1994) and [11C]WAY-100635 (Gunn et al. 1998; Farde et al. 1998; Parsey et al. 2000). These
parametric images took 1 hour to compute with DEPICT on a desktop workstation (equivalent
computation times for parametric images generated by the Logan analysis and Spectral analysis
would be 5 mins and 30 mins respectively).
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(a) Cost function for regularization param-
eter (µ)

(b) % Error of VD estimate shown in Figure
9

Figure 10: 4D Simulation: Cost function and error in VD estimate.

The regularization parameters were calculated as µ̂ = 0.0095 for [11C]diprenorphine and µ̂ =
0.015 for [11C]WAY-100635 (see Figure 12).

5 Discussion

The current paper has introduced, DEPICT, a tracer kinetic modelling technique for the quan-
titative analysis of dynamic in vivo radiotracer studies which allows for the data-driven esti-
mation of parametric images based on compartmental theory. DEPICT requires no a priori
decision about the tracers fate in vivo, instead determining the most appropriate model from
the information contained within the data. Although, the method is classed as data-driven it
is founded on compartmental theory (Gunn et al. 2001) and this enables parameter estimates
to be interpreted within a traditional compartmental framework. The system macro parame-
ters are simply determined from the estimated IRF. The method can be applied to dynamic
radiotracer studies involving either a bolus or bolus-infusion tracer administration scheme. DE-
PICT is general, and whilst the examples here are concerned with tracers exhibiting reversible
kinetics, the method is equally applicable to systems with irreversible kinetics. In addition to
parameter estimates, DEPICT returns model order estimates which correspond to the number
of numerically identifiable compartments in the system. There may be additional compart-
ments that are not supported by the statistical quality of the data, however this is not in any
way a practical restriction.

DEPICT uses a basis function approach (Koeppe et al. 1985; Cunningham and Jones 1993;
Gunn et al. 1997) to the parameter estimation problem. The constructed problem is ill-
posed and its solution requires an appropriate constraint. Whilst, spectral analysis approaches
this problem using the non-negative least squares algorithm (Cunningham and Jones 1993),
DEPICT employs the method of basis pursuit denoising (Chen 1995) which involves a 1-norm
penalty function on the coefficients. Both methods lead to a sparse solution but DEPICT
does not constrain the coefficients to be positive which makes it appropriate for application
to the general reference tissue model. Basis pursuit denoising is a technique that extracts a
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(a) [11C]Diprenorphine: VD image

(b) [11C]Diprenorphine: Model Order image

(c) [11C]WAY-100635: BP .f2 image

(d) [11C]WAY-100635: Model Order image

Figure 11: Measured data: Parametric images estimated using DEPICT.
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(a) [11C]Diprenorphine (b) [11C]WAY-100635

Figure 12: Measured data: Cost functions for regularization parameter (µ).

subset of terms from an overcomplete dictionary and thus it is possible to provide a model
which is interpretable, whilst retaining good approximating capability. The principle behind
the approach is to trade off the error in approximation with the sparseness of the representation.

The three data-driven methods investigated all performed well for low noise levels, as deter-
mined from the 1D simulations, with DEPICT returning the lowest mean squared error. The
Logan analysis demonstrated a bias at higher noise levels which has been documented recently
(Slifstein and Laruelle 2000). To address the issue of noise induced bias in the Logan analysis
two approaches have since been developed (Logan et al. 2001; Varga and Szabo 2002). These
modifications would have improved the performance of the Logan analysis at high noise levels
but were not considered here as the aim was to introduce DEPICT and compare it against the
data-driven methods in common use. DEPICT and spectral analysis allow for the estimation of
the model order. The model order was well characterized by both methods for the 1D plasma
input simulations and using DEPICT for the reference tissue input simulations. Spectral anal-
ysis is not valid for the general reference tissue model as it does not permit negative coefficients
which can occur in the impulse response function.

In summary, this paper has introduced a new method, DEPICT, which delivers parametric
images or regional parameter estimates from dynamic radiotracer imaging studies without the
need to specify a compartmental structure. DEPICT is applicable to both plasma and reference
tissue input analyses. The results presented demonstrate that DEPICT is highly competitive
with existing data-driven estimation methods. Furthermore, DEPICT is a transparent data-
driven modelling approach as it returns, not only macro parameter values, but also information
on the underlying model structure.

A Logan Plot derivation

Here, a formal derivation of the Logan plot is presented for both a plasma and reference tissue
input function. The plasma input Logan plot corresponds to the original presentation by Logan
et al. (1990). The reference tissue input analysis presented here differs from Logan et al. (1996)
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in that it proves that the plot is valid for an arbitrary number of compartments in the reference
tissue as well as the target tissue. Both derivations presented exclude the presence of vascular
contribution to the tissue signal.

A.1 Plasma Input

The Logan plot with a plasma input (Logan et al. 1990) is given by,

∫ t

0
CT (t)dt

CT (t)
' VD

∫ t

0
CP(t)dt

CT (t)
+ c. (24)

From Gunn et al. (2001) the general expression for the target tissue is given by,

CT (t) =
n∑

i=1

φie
−θit ⊗ CP(t), (25)

and the volume of distribution by,

VD =
n∑

i=1

φi

θi

. (26)

Without loss of generality an ordering on the θ’s is imposed such that θ1 > θ2 > . . . > θn.
Substituting equation (25) into the left hand side of equation (24) yields,

∫ t

0
CT (t)dt

CT (t)
=

∫ t

0

∑n
i=1 φie

−θit ⊗ CP(t)dt

CT (t)
, (27)

=

∑n
i=1

φi

θi
(1− e−θit)⊗ CP(t)

CT (t)
, (28)

=

∑n
i=1

φi

θi
⊗ CP(t)

CT (t)
−
∑n

i=1
φi

θi
e−θit ⊗ CP(t)

CT (t)
, (29)

=
n∑

i=1

φi

θi

∫ t

0
CP(t)dt

CT (t)
−
∑n

i=1
φi

θi
e−θit ⊗ CP(t)

CT (t)
, (30)

= VD

∫ t

0
CP(t)

CT (t)
−
∑n

i=1
φi

θi
e−θit ⊗ CP(t)∑n

i=1 φie−θit ⊗ CP(t)
. (31)

For suitably large t, ∫ t

0
CT (t)dt

CT (t)
' VD

∫ t

0
CP(t)dt

CT (t)
− 1

θn

. (32)
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A.2 Reference Tissue Input

The Logan plot with a reference tissue input (Logan et al. 1996) is given by,

∫ t

0
CT (t)dt

CT (t)
' VD

V ′
D

∫ t

0
CR(t)dt

CT (t)
+ c. (33)

From Gunn et al. (2001) the general expression for the target tissue is given by,

CT (t) = φ0δ(t) +
m+n−1∑

i=1

φie
−θit ⊗ CR(t), (34)

and the volume of distribution ratio by,

VD

V ′
D

= φ0 +
m+n−1∑

i=1

φi

θi

. (35)

Without loss of generality an ordering on the θ’s is imposed such that θ1 > θ2 > . . . > θm+n−1.

Substituting equation (34) into the left hand side of equation (33) yields,

∫ t

0
CT (t)dt

CT (t)
=

∫ t

0
(φ0δ(t) +

∑m+n−1
i=1 φie

−θit)⊗ CR(t)dt

CT (t)
, (36)

=
φ0

∫ t

0
CR(t)dt+

∑m+n−1
i=1

φi

θi

∫ t

0
CR(t)dt

CT (t)
−
∑m+n−1

i=1
φi

θi
e−θit ⊗ CR(t)

CT (t)
, (37)

=

(
φ0 +

∑m+n−1
i=1

φi

θi

)
⊗ CR(t)

CT (t)
−
∑m+n−1

i=1
φi

θi
e−θit ⊗ CR(t)

CT (t)
, (38)

=

(
φ0 +

m+n−1∑
i=1

φi

θi

) ∫ t

0
CR(t)dt

CT (t)
−
∑m+n−1

i=1
φi

θi
e−θit ⊗ CR(t)

CT (t)
, (39)

=
VD

V ′
D

∫ t

0
CR(t)dt

CT (t)
−

∑m+n−1
i=1

φi

θi
e−θit ⊗ CR(t)

φ0δ(t) +
∑m+n−1

i=1 φie−θit ⊗ CR(t)
. (40)

For suitably large t, ∫ t

0
CT (t)dt

CT (t)
' VD

V ′
D

∫ t

0
CR(t)dt

CT (t)
− 1

θm+n−1

. (41)
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B Glossary

Symbol Description Units

CT (t) Concentration time course of radioactivity in the target tissue kBq.mL−1

CR(t) Concentration time course of radioactivity in the reference tissue kBq.mL−1

CP (t) Concentration time course of radioactivity in plasma kBq.mL−1

CB(t) Concentration time course of radioactivity in whole blood kBq.mL−1

CI(t) Concentration time course of radioactivity of the input function kBq.mL−1

φ Parameter vector for coefficients of the general impulse response function

θ Parameter vector for exponents of the general impulse response function

tsj Start time for the jth temporal frame min

tej End time for the jth temporal frame min

n Number of tissue compartments in the target tissue

m Number of tissue compartments in the reference tissue

q Number of exponential terms in the impulse response function

Ψ Matrix of basis functions or ”Dictionary” kBq.mL−1

y Measured PET tissue data kBq.mL−1

µ Regularization parameter

VD Volume of distribution of the target tissue (mL plasma).(mL tissue)−1

V ′
D Volume of distribution of the reference tissue (mL plasma).(mL tissue)−1

KI Irreversible uptake rate constant from plasma for the target tissue (mL plasma).min−1.(mL tissue)−1

BP Binding Potential (mL plasma).(mL tissue)−1

VB Fractional blood volume

f1 Plasma free fraction

f2 Tissue free fraction

Bmax Maximum concentration of receptor sites nM

KDTracer
Equilibrium disassociation rate constant nM

Fi Free concentration of competing ligand nM

KDi Equilibrium disassociation rate constant of competing ligand nM

⊗ Convolution operator
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