BEaST: Brain Extraction based on nonlocal Segmentation Technique
In testing, a mean Dice similarity coefficient of 0.9834±0.0053 was obtained when performing leave-one-out cross validation selecting only 20 priors from the library. Validation using the online Segmentation Validation Engine resulted in a top ranking position with a mean Dice coefficient of 0.9781±0.0047. Robustness of BEaST is demonstrated on all baseline ADNI data, resulting in a very low failure rate. The segmentation accuracy of the method is better than two widely used publicly available methods and recent state-of-the-art hybrid approaches. BEaST provides results comparable to a recent label fusion approach, while being 40 times faster and requiring a much smaller library of priors.
Results from the Segmentation Validation Engine can be found here
References
Simon Fristed Eskildsen, Pierrick Coupé, Vladimir Fonov, José V. Manjón, Kelvin K. Leung, Nicolas Guizard, Shafik N. Wassef, Lasse Riis Østergaard and D. Louis Collins: “BEaST: Brain extraction based on nonlocal segmentation technique”, NeuroImage, Volume 59, Issue 3, pp. 2362–2373.
http://dx.doi.org/10.1016/j.neuroimage.2011.09.012
Download
This part is under construction
C source code
The latest bleeding edge source code can be found at github
The following releases has been tested under Debian style Linux distributions, such as Ubuntu.
beast-0.1.tar.gz [md5sum: b4cdf710a9defdab7b16b29b578e871b]
beast-0.2.tar.gz [md5sum: 685c80456346c05f37d96dc77938f85e]
- includes a free example image library
beast-1.15.tar.gz [md5sum: 1f302e1d5e882a621699df37d8642bb8] (new)
Matlab code
Pending…
Binaries
Version 0.1, x86_64 Linux: mincbeast.x86_64.zip [md5sum: 7526f11352eecad2109a0039c5cd1ad8]
Version 0.2, x86_64 Linux: mincbeast-0.2_x86_64.zip [md5sum: 2da7395e97ec6994ac5c5ea9cb5bd740]
Version 1.15, x86_64 Linux: mincbeast-1.15_x86_64.tar.gz [md5sum: af92d3ade6d6156423802eb3b2752387] (new)
Library images
Free library of 10 images [md5sum: a332383324974c1450cb3ec61f3808f9]
- contains 10 images at 4mm, 2mm, and 1mm voxel sizes
See README.library on how to include ADNI images/masks in the library.