Tumor surgery

The extent of resection has been demonstrated to be a significant independent prognostic factor for patients with brain tumours. More complete resections are associated with increased overall survival and longer progression-free survival. However, complete gross total resection (GTR) of gliomas is difficult to achieve due to their infiltrative nature, rendering their margins indistinct. While neuronavigation systems can help surgeons localize the tumour in the patient, the brain shift phenomenon invalidates the patient-to-image alignment for navigation, preventing accurate use of the preoperative images and surgical plan. Even though intraoperative magnetic resonance imaging has been shown to improve surgical outcomes in tumour surgery, such technology is extremely expensive, prolongs surgery, poses logistical challenges during awake surgeries, and is available in only a few centers worldwide. We have developed a neuronavigation platform that integrates tissue deformation tracking during surgery based on tracked intraoperative ultrasound (iUS) that can accurately align all pre-operative data to the iUS, thus accounting for brain shift.

References

[1] I. Gerard and D. L. Collins, “An Analysis of Tracking Error in Image Guided Neurosurgery”, Int. J. Computer Assisted Radiolgy and Surgery. 2015, Jan 4; 1–10 [Epub ahead of print].

[2] H. Rivaz, D.L. Collins, “Near real-time robust non-rigid registration of volumetric ultrasound images for neurosurgery”, Ultrasound in Medicine and Biology. 2015 Feb; 41(2): 574–587.

[3] H. Rivaz, S.J.S Chen, D.L. Collins, “Automatic Deformable MR-Ultrasound Registration for Image-Guided Neurosurgery”, IEEE Transactions on Medical Imaging. 2015 Feb; 34(2); 366–380.

[4] H. Rivas, Z. Karimaghaloo, D.L. Collins, “Nonrigid Registration of Ultrasound and MRI Using Contextual Conditioned Mutual Information”, IEEE Trans Med Imag. 2014 Mar;33(3):708–25.

[5] S. Beriault, A. Sadikot, F. Alsubaie, S. Drouin, D.L. Collins, G.B. Pike. “Neuronavigation using susceptibility-weighted venography: application to deep brain stimulation and comparison with gadolinium contrast”, Journal of Neurosurgery. 2014 Jul;121(1):131–41.

[6] L. Mercier, D Araujo, C Haegelen, RF Del Maestro, K Petrecca, DL Collins, “Registering pre- and post-resection 3D ultrasound for improved residual brain tumor localization”, Ultrasound in Medicine and Biology, 2013 Jan;39(1):16–29.

[7] M. Kersten-Oertel, P. Jannin, D.L. Collins, “The State of the Art in Mixed Reality Visualization in Image-Guided Surgery”, IEEE Transactions on Visualization and Computer Graphics. 2013 Mar;37(2):98–112.

[8] D. De Nigris, D. L. Collins, T. Arbel, “ Fast Rigid Registration of Pre-Operative Magnetic Resonance Images to Intra-Operative Ultrasound for Neurosurgery based on High Confidence Gradient Orientations”, 2013 July; 8(4): 649–661.